What Happens to Lost Gravitational Energy in Degenerate Matter?

AI Thread Summary
In the discussion about lost gravitational energy in degenerate matter, the focus is on the fate of gravitational potential energy (GPE) when a white dwarf collapses. As the object contracts, some GPE is converted into kinetic energy, which initially manifests as inward motion. However, when the star stabilizes, this kinetic energy is ultimately transformed into heat. The conversation highlights the importance of energy conservation in this process, emphasizing that the lost GPE does not disappear but rather changes form. The discussion concludes that the energy is likely converted into heat during the star's stabilization phase.
cepheid
Staff Emeritus
Science Advisor
Gold Member
Messages
5,197
Reaction score
38
Okay, I noticed that my OP got 39 views but no responses, so let me change my strategy. Here is my question:

An object made out of degenerate matter (e.g. white dwarf) will collapse if more gravitational energy is lost in getting smaller than the energy that is gained due to electron degeneracy. So, the sum of these two energies will decrease. But total energy must be conserved. So, what happens to the rest of the GPE that is lost (the part that doesn't go into doing work to overcome degeneracy pressure during contraction)? Is it just converted to heat?

My OP is below if you want more details on what I'm asking about.

My prof. was giving a sort of heuristic outline of how the Chandrasekhar mass limit arises. He started with the basic "equilibrium equation" that the energy E = Ekin + Epot should be minimized. This is in the context of a "cold" object, where most of "Ekin" is due to electron degeneracy. In other words, there is no thermal pressure support. All of the support against gravity comes from degeneracy pressure. He then worked out how each of these energies varies with the volume (or radius) of the object, and showed that in the case of non-relativistic electrons, there is an equilibrium point (the sum of the energies E is minimized for some finite radius R), and in the relativistic case, there is no global minimum, the solution is unchecked collapse. I looked into this further, and I realized that another way to think about this is in terms of pressure balance. You can equate the "gravitational pressure" to the negative of the degeneracy pressure, where

Pgrav = -∂Epot/∂V

and

Pdeg = -∂Ekin/∂V

This equation of pressures results in

∂(Epot + Ekin) / ∂V = 0

showing that pressure balance does indeed occur at a minimum in the sum of the energies.

Here is my question: in the situation where collapse occurs, gravitational pressure exceeds degeneracy pressure, meaning that the rate of change of Epot and Ekin with radius (or volume) is such that more GPE is lost in contracting than the energy that is gained due to electron degeneracy. In other words, not all of the GPE that is lost is "used up" in doing work against degeneracy pressure. The sum E is actually reduced. But total energy must be conserved right? The sum E must not be the total energy of the system. So what happens to the rest of that GPE?

An obvious answer would seem to be: "it is converted into heat." Is that the case? If so, then I have another related question...
 
Last edited:
Astronomy news on Phys.org
It's converted to kinetic energy from ordered inward directed motion in the first place. If the star settles down again, it would become heat.
 
Heh, inwardly directed motion. How did I miss that?
 
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...

Similar threads

Back
Top