Stan52 said:
Here's a good exercise for you math whizzes (no, I don't know the answer):
How stable (and what shape) would the orbit (around the Sun) of the Earth be if the moon was equal to the Earth in size and mass, but correspondingly further away so that the tidal effect would be the same as it is now?
1: how far apart would that be?
Just about 4.3 times the present distance of the Sun. while gravitational force decreases by the square of the distance, tidal forces decrease by the cube of the distance.
2: would the orbit be disrupted by the Sun or Venus? (assume the rest of the solar system unchanged)
I wouldn't expect much effect from Venus. The Sun will have an effect. In fact, the Sun will very nearly pull them apart. There is something known as the Hill sphere, it is the maximum distance that a moon can be from its planet without being pulled away by the Sun. Usually you'll hear that the Earth's Hill sphere has a radius of about 1,496,000 km or about 3.9 times the distance of the Moon. So, at first, it would seem that the distance I gave above would be outside that distance. However, this stated Hill sphere radius is for when the moon is guite small as compared to the planet. Having two bodies the same size changes this slightly, and moves the Hill sphere out to about 4.45 times the distance of the Moon, which our twin Earth scenerio just fits inside of. The tidal effect of the Sun will however tend to elongate the planets' mutual orbit along the line joining them to the Sun. (The Sun already does this to a certain degree to the Moon's orbit around the Earth)
3: how likely for such a structure to develop somewhere?
Unknown. Though I wouldn't expect the chance to be high.
4: would these twin planets be rotation-locked (same side always facing each other)? (This would make the "day" equal to their "month": how long would that be?)
Assuming that both bodies started with the same rotation rate as the Earth did and have existed for the same amount of time as the Earth-moon system, they shouldn't be tidally locked. Remember, this locking is due to the tidal force, and we have removed these planets to a distance where their tidal effect on each other equals that of the moon on the Earth now. Since the Moon has not been able to lock the Earth to it yet, These planets shoudn't have either.
5: considering the unusual size our moon actually is compared to its planet, how much of those effects are present as it is?
One of the most telling effects is that one planet would not orbit the center of the other, but they would orbit a barycenter located halfway between the two. Likewise, the Earth and Moon orbit a common barycenter, in this case one just a little under the surface of the Earth.
One interesting point is that the wach planet, as viewed from the other would be appear to be almost the same size as the moon now apprears from the Earth. The only reason that they wouldn't be exactly the same size is that the planets would be denser than the Moon. (if they were of the same density as the Moon, they would look to be exactly the same size as the moon does now.)