- Thread starter basty
- Start date

Yes. A spline is a mechanical device which is used to draw a curve which passes thru several known points.What is the meaning of "cubic" term in a cubic spline?

Is it mean a spline with a degree of 3?

A cubic spline is a mathematical equation which replicates what the physical device is used for: creating a smooth curve which passes thru all the data points. The equation is a polynomial of degree three in this case. There are other formulations used, but cubic splines are very common and easy to construct.

http://en.wikipedia.org/wiki/Spline_interpolation

Splines are useful for interpolating data in between the fixed points used in their development.

- 477

- 32

Splines are interesting because they form the math basis of computer-aided design. Because of numerical errors, generally lower-degree splines are nicer to work with, but you can't really go too low without getting some interesting effects. For example, cubic splines are usually used because you can achieve what's called C2 continuity. The math is kinda cool, but this has effects in the real world. For example, car bodies are usually C2 because if they weren't they wouldn't look smooth in a showroom because it wouldn't have smooth reflection lines.

In theory, you could produce higher order splines, but the math becomes more complex with increasing order. Higher order splines tend to oscillate as well, and sometimes fail to produce a smooth curve which passes thru the data points.Does this mean a quadratic spline is a spline with degree 2?

Is there availabe a quartic, quintic, and so on, of a spline?

What is the difference between quadratic and cubic spline?

The cubic spline is the formulation which most closely mimics the elastic behavior of a physical spline.

Quadratic interpolating splines can also be developed, but due to the nature of the resulting curve (a parabola), these splines are not as widely useful as the cubic. Quadratic interpolation is, however, used as the basis for developing Simpson's First Rule of numerical integration, while cubic interpolation forms the basis for Simpson's Second Rule.

What kind of numerical error it is?

Splines are interesting because they form the math basis of computer-aided design. Because of numerical errors, generally lower-degree splines are nicer to work with, but you can't really go too low without getting some interesting effects. For example, cubic splines are usually used because you can achieve what's called C2 continuity. The math is kinda cool, but this has effects in the real world. For example, car bodies are usually C2 because if they weren't they wouldn't look smooth in a showroom because it wouldn't have smooth reflection lines.

Is it such as any number divide by 3 (such as 1/3, 2/3, 4/3, 5/3, 7/3. and so on) as the result is not being an integer (such as 1.33333, 0.6666667, and so on)?

What is C2 continuity?

Could you give an example?

- 477

- 32

In a matter of speaking, a spline is basically a bunch of curves strung together. For example, a B-spline can be represented as a series of Bezier curves. However, when you string curves together, you can control how continuous you want the resulting spline to be. Curves that meet at an endpoint only are said to be C0 continuous (usually seen as a sharp point there). If the curves are C0 and also the derivatives of the curves (tangent lines) are equal at that endpoint, the curves are said to be C1. If the curves are C1 and the second derivatives are equal (osculating circles or curvature) there, then they are C2. C2 continuity is important for a lot of reasons. I already mentioned the smooth reflection lines on a car hood. If you're designing a set of train tracks to meet, C2 continuity ensure that there is finite jerk (derivative of acceleration) at the point where they meet.

We Value Quality

• Topics based on mainstream science

• Proper English grammar and spelling

We Value Civility

• Positive and compassionate attitudes

• Patience while debating

We Value Productivity

• Disciplined to remain on-topic

• Recognition of own weaknesses

• Solo and co-op problem solving

• Topics based on mainstream science

• Proper English grammar and spelling

We Value Civility

• Positive and compassionate attitudes

• Patience while debating

We Value Productivity

• Disciplined to remain on-topic

• Recognition of own weaknesses

• Solo and co-op problem solving