What is a Possible Algebraic Proof of Case 1 of Fermat's Last Theorem?

  • Thread starter Thread starter vantheman
  • Start date Start date
  • Tags Tags
    Theorem
vantheman
Messages
44
Reaction score
0
Most with any knowledge of Number Theory are aware that many hundreds of thousands of hours have been spent reviewing flawed "proofs" of Fermat's Last Theorem (FLT). It is understandable that a serious mathematician would not spend more than a few minutes looking at a possible "proof". Wiles' proof is magnificient, if you have a strong background in higher mathematics, which very few do. The link below is a 'possible' algebraic proof of Case 1 that, if it doesn't have a fatal flaw, may be a solution that a math undergraduate can understand. I hope you will not find it a waste of time to take a look.

http://dutch-fltcase1.blogspot.com/
 
Physics news on Phys.org
Hi, vantheman,
I have a couple of questions:

1) Case 1 says "n divides neither of x,y,z"; yet for Section I, at the beginning of page 9, you take the condition (n,x) = (n,y) = (n,z) = 1, which is much stronger. (For example, 6 does not divide any of 8, 11, 17, yet it has a common factor with the first of them.)

2) Also on page 9, eq.1.6, I believe you are trying to find a factor h in the right-hand side, and all terms have one h except the last, a^n . n^(n-2). Why can't the factor h be in n^(n-2)? Or, for that matter, h could be composite, with some of its prime factors in a^n and the others in n^(n-2).

Thanks
 
I am assuming the stronger position - n does not divide x, y or z and x, y and z have no common factors.

Since n does not divide y , n does not divide h, since y == h mod n. Therefore h cannot have any n factors.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

2
Replies
78
Views
6K
Replies
3
Views
5K
Replies
12
Views
3K
Replies
13
Views
2K
Replies
20
Views
37K
Replies
23
Views
5K
Replies
150
Views
30K
Back
Top