courtrigrad
- 1,236
- 2
Hello all
Let's say we define a stochastic integral as:
W(t) = \int^{t}_{0} f(\varsigma)dX(\varsigma) = \lim_{n\rightarrow\infty} \sum^{n}_{j=1} f(t_{j-1})(X(t{j})) - X(t_{j-1})) with t_{j} = \frac{jt}{n} IS this basically the same definition as a regular integral?
Also if we have W(t) = \int^{t}_{0} f(\varsigma) dX(\varsigma) then does dW = f(\varsigma) dX?
Thanks
Let's say we define a stochastic integral as:
W(t) = \int^{t}_{0} f(\varsigma)dX(\varsigma) = \lim_{n\rightarrow\infty} \sum^{n}_{j=1} f(t_{j-1})(X(t{j})) - X(t_{j-1})) with t_{j} = \frac{jt}{n} IS this basically the same definition as a regular integral?
Also if we have W(t) = \int^{t}_{0} f(\varsigma) dX(\varsigma) then does dW = f(\varsigma) dX?
Thanks