BuckeyePhysicist
- 22
- 0
Is a diquark $ [q_1q_2]$ a totally antisymmetric state in color, flavor and spin space,
i.e. a color antitriplet $\overline{3}_c$, flavor antitriplet $\overline{3}_f$
and spin singlet?
So if it has u, d flavors, how to write it explicitely?$ |ud -du \rangle \otimes \frac{1}{\sqrt{N_c}}|cc> \otimes \frac{1}{\sqrt{2}}(|\uparrow\downarrow \rangle - |\downarrow\uparrow \rangle)$ ?
i.e. a color antitriplet $\overline{3}_c$, flavor antitriplet $\overline{3}_f$
and spin singlet?
So if it has u, d flavors, how to write it explicitely?$ |ud -du \rangle \otimes \frac{1}{\sqrt{N_c}}|cc> \otimes \frac{1}{\sqrt{2}}(|\uparrow\downarrow \rangle - |\downarrow\uparrow \rangle)$ ?
Last edited: