What Is the Acceleration of a Falling Rod at 55 Degrees?

AI Thread Summary
The discussion focuses on calculating the acceleration of the end of a falling rod that pivots about a hinge. The rod, 2.40 m long and weighing 135 N, rotates through an angle of 55 degrees. Key equations include torque (τ = Iα) and the moment of inertia for a thin rod (I = (1/3)MR²). The correct torque calculation involves applying the weight at the center of mass, which is located at 1.2 m from the pivot, and using the sine of the angle between the position vector and the force vector. The final calculations confirm that the correct approach yields the desired acceleration.
PherricOxide
Messages
8
Reaction score
0

Homework Statement



A very thin uniform rod, 2.40 m long and of weight 135 N, has a frictionless hinge at its lower end. It starts out vertically from resting on a wall and falls, pivoting about the hinge. Just as it has rotated through an angle of 55 degrees, the acceleration of the end farthest from the hinge is what?

Homework Equations



\tau = I\alpha
\tau = R X F = |R| |F| sin(angle between)

I for thin rod,
I = (1/3)MR2

The Attempt at a Solution



To find R X F I tried to find the angle between the force of gravity and the pivot. If you place both vectors at the pivot, R will be 35 degrees above the horizontal (after falling 55 degrees), and gravity will be directly down, so I believe the angle between them is 90+35 = 125 degrees? This is one thing I'm not entirely sure about.

\tau = 2.4M * 135N * sin(125)

Then finding I,
I = (1/3)(135N/9.8)*2.42

And then doing T/I to find the angular acceleration,
(135N * sin(125)) / ( (1/3)(135N/9.8)*2.4) ~= 9.69

Finally, multiply that by the radius of 2.4M to get the linear acceleration. This didn't give me right answer though.
 
Physics news on Phys.org
The interior angle between the force and rod is not correct. Draw a sketch and use some geometry. Also, where along the length of the rod should you apply the weight force acting on the rod?
 
Weight acts at the center of the rod.
So the torque = F*R/2*sinθ
 
I think the angle is actually correct, I just didn't know the weight acted on the center of mass.

Torque = 135N * 1.2M * sin(125)

Dividing that by the moment of inertia and them multiplying by the radius gave me the correct answer.
 

Attachments

  • torque_problem.jpg
    torque_problem.jpg
    5.7 KB · Views: 1,436
PherricOxide said:
I think the angle is actually correct, I just didn't know the weight acted on the center of mass.

Torque = 135N * 1.2M * sin(125)

Dividing that by the moment of inertia and them multiplying by the radius gave me the correct answer.
To be technically and graphically correct in calculating the torque of the weight force about the pivot, it's T=r X F = 1.2*135*sin(55) clockwise, where r is the position vector from the cm to the pivot, F is the weight vector applied at the cm, and theta is the angle between the position vector and the force vector at the point of application of the force. You get the same answer, but be careful in drawing the sketch. The weight acts down at the cm, not at the pivot. Or its T= (perpendicuar distance from the pivot to the line of action of the force) *(force) = 1.2*sin(55)*135, clockwise, again, same result.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top