wisredz
- 111
- 0
Let P(x,a) and Q(-x,a) be two points on the upper half of the ellipse
\frac{x^2}{100}+\frac{(y-5)^2}{25}=1
centered at (0,5). A triangle RST is formed by using the tangent lines to the ellipse at Q and P.
Show that the area of the triangle is
A(x)=-f'(x)[x-\frac{f(x)}{f'(x)}]^2
where y=f(x) is the function representing the upper half of the ellipse.
I know f(x) and f'(x). I just cannot get A(x). I'm going mad please help.
Thanks in advance
\frac{x^2}{100}+\frac{(y-5)^2}{25}=1
centered at (0,5). A triangle RST is formed by using the tangent lines to the ellipse at Q and P.
Show that the area of the triangle is
A(x)=-f'(x)[x-\frac{f(x)}{f'(x)}]^2
where y=f(x) is the function representing the upper half of the ellipse.
I know f(x) and f'(x). I just cannot get A(x). I'm going mad please help.
Thanks in advance
Last edited: