What is the Balance of Linear Momentum in Continuum Physics?

Click For Summary
SUMMARY

The discussion centers on the confusion surrounding the application of Cauchy’s first equation of motion in continuum physics, specifically regarding the body force 'b' and the notation for density (ρ0). Participants highlight the lack of clarity in the problem statements, particularly in the definitions and equations presented. The equation for the balance of linear momentum, expressed as 'b + div σ = ρ x', raises questions about the divergence operator and its implications. Overall, the conversation emphasizes the need for clearer problem statements and better presentation of mathematical work.

PREREQUISITES
  • Understanding of Cauchy’s first equation of motion in continuum mechanics
  • Familiarity with the divergence operator in vector calculus
  • Basic knowledge of continuum physics terminology, including body force and density
  • Proficiency in mathematical notation and problem-solving in physics
NEXT STEPS
  • Study the derivation and applications of Cauchy’s first equation of motion
  • Learn about the divergence operator and its role in continuum mechanics
  • Explore the concept of body forces in fluid dynamics and solid mechanics
  • Review best practices for presenting mathematical work clearly and effectively
USEFUL FOR

Students and professionals in physics, particularly those focused on continuum mechanics, as well as educators seeking to improve clarity in problem statements and mathematical presentations.

Ihsan
Messages
2
Reaction score
1
Homework Statement
1- Find the body force b that acts on this continuum so that Cauchy’s first equation of motion.
2-Find the body forces at the reference point ( 1, 2, 1) where ρ0(rho nod)= 2
Relevant Equations
Balance of Linear Momentum or Cauchy first equation of motion -->b+div σ =ρ x ( x here div x and again div x two time)
Hi,

unfortunately, I am not getting anywhere with the following task
and I try solve it
 

Attachments

  • لقطة شاشة 2023-12-16 010246.png
    لقطة شاشة 2023-12-16 010246.png
    22.8 KB · Views: 113
  • WhatsApp Image 2023-12-16 at 12.20.18 AM.jpeg
    WhatsApp Image 2023-12-16 at 12.20.18 AM.jpeg
    55 KB · Views: 79
  • WhatsApp Image 2023-12-16 at 12.20.17 AM (1).jpeg
    WhatsApp Image 2023-12-16 at 12.20.17 AM (1).jpeg
    24.6 KB · Views: 81
  • WhatsApp Image 2023-12-16 at 12.20.17 AM.jpeg
    WhatsApp Image 2023-12-16 at 12.20.17 AM.jpeg
    46.4 KB · Views: 95
  • WhatsApp Image 2023-12-16 at 12.20.15 AM.jpeg
    WhatsApp Image 2023-12-16 at 12.20.15 AM.jpeg
    41.1 KB · Views: 78
Physics news on Phys.org
This isn't my area of expertise, so I can't offer any help with this problem. However, I do have several comments about the problem and your work.

  1. The first problem statement is confusing. "Find the body force b that acts on this continuum so that Cauchy’s first equation of motion." So that Cauchy's first equation of motion does what? Is satisfied? Whoever wrote this problem didn't provide a complete sentence or complete thought.
  2. The second problem statement is also confusing. The last part of the problem text (in one of your attachments says "... where ##0 \rho = 2##. What does this mean? In the problem statement you wrote, you have "... where ρ0(rho nod)= 2" I don't understand either of these.
  3. For your relevant equations you have "Balance of Linear Momentum or Cauchy first equation of motion -->b+div σ =ρ x ( x here div x and again div x two time)" Is this the divergence of σ? What does "x here div x and again div x two time" mean?
  4. The work you show in the attachments is not as clear as it could be. It looks like ink from one side of the page shows through on the other side of a couple of the pages, making them hard to read. Also, you have crossed out some of the stuff, which again makes your work less legible.
 
  • Like
Likes   Reactions: Ihsan, BvU and PeroK
Thanks you for your note .and Sorry for this .I am new to English language. and this is my first time to use this page .So for your comment ρ0 it mean density in reference configuration and x is acceleration I am very sorry for this .and Sorry for the photo, I did not notice the low resolution of the photo and the ink behind the paper I will try to correct my mistake .and I will take your comments in my mind . Thank you again
 
Last edited:
  • Like
Likes   Reactions: WWGD

Similar threads

Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K