- #1

n9e9o9

- 1

- 0

Definition 1: The no-slip condition for viscous fluid states that at a solid boundary, the fluid will have zero velocity relative to the boundary.

Definition 2: The fluid velocity at all liquid–solid boundaries is equal to that of the solid boundary.

What is the velocity at a solid boundary if its moving? This would contradict the zero velocity definition.

Take the example of a air-liquid-solid system, with air on top, liquid in the middle, and the solid on the bottom. Suppose the bottom plate is pulled with a velocity V, at steady-state, to the right-hand side of the system. What would the boundary condition be and/or what would the velocity and shear stress profile look like? (Cartesian coordinates with y in the "north" direction and x in the "east direction")

My guess for the boundary conditions would be that the v=V at y=0 and v=0 at y=[tex]\delta[/tex].

Is this the correct logic?