What is the connection between energy eigenstates and position?

jeebs
Messages
314
Reaction score
5
The first thing I remember hearing about in QM was the time-independent 1-D schrodinger equation, Hψ = (\frac{-\hbar^2}{2m}\frac{d^2}{dx^2} + V)ψ(x) = Eψ(x). This is an eigenvalue equation, the Hamiltonian operator H operating on the energy eigenstate ψ to produce the product of the energy eigenvalue, E, and ψ.

However, we also come to know this state ψ by another name, the "wavefunction", and we find that if we take |ψ(x)|^2 we find the probability of finding our particle at at position x.

My question is, what is it about the eigenstates of the energy operator in particular that should mean we can find out this information about the likelihood of a particle occupying a certain position x upon measurement? I don't see the connection - especially seeing as we could take a free particle (V=0) so that the energy of the particle has no dependence on position, only momentum?
In other words, why don't we take any other eigenstate for any other observable quantity, square that and use that for our position probability?
 
Physics news on Phys.org
You can choose to express your wavefunction in any complete basis. The thing that's special about the energy eigenbasis is it gives you an easy way to evolve the states in time. The Born postulate has nothing to do with energy eigenbases.
 
the wave function solutions of the Schrodinger equation for any system are solutions in a "state space" within the Hilbert Space. The Hilbert space is a space where the elements of the space are solutions to the wave equation (where the operation is just the inner product). A state of a quantum mechanical system is then a vector in the Hilbert space, and observables (which act as operators in Quantum mechanics) are a type of linear operator. Like any linear operator there exists a matrix representation allowing for our eigen value to be relevant. But the fact that these eigen-values correspond to the systems energy comes solely from the derivation of the Schrodinger equation which uses De Broglie's relations and the least action principle to find a wave form from particle quantisation. The fact energy became the scalar acting as a eigen-value for an eigen-value equation was a beautiful by-product.
The state space is not limited to a position representation. ANY observable my act as the linear operator in our Hilbert space.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top