What is the Definition of Cancellation Law in Mathworld?

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Law
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372
in mathworld the definition of this is:"If bc=bd(mod a) and (b,a)=1 (i.e., a and b are relatively prime), then c=d (mod a)".

now let's see if i understand it relatively primes are "Two integers are relatively prime if they share no common positive factors (divisors) except 1" now let's say for the case of (3,2) or any other case we should translate it to b and a therefore (a+1,a)now let's put it the first formula like this:
(a+1)c-d(a+1)/a
(a+1)*(c-d)/a
now from this how can i get c-d/a or c=d (mod a)?
 
Mathematics news on Phys.org
Why are you dividing things by a?

Anyways, the key is to use one of the properties of gcds:

For any integers a and b:
if gcd(m, n) = d then there exist integers u and v such that:
d = um + vn
 
Originally posted by Hurkyl
Why are you dividing things by a?

Anyways, the key is to use one of the properties of gcds:

For any integers a and b:
if gcd(m, n) = d then there exist integers u and v such that:
d = um + vn
im dividing by a because the definition of c=d (mod a) is (c-d)/a integer.

now a few questions:
1. how is this known thing about gcd gives the explanation to the c. law?
2. how did you derive to the equation d=um+vn?
i can see that m/d+n/d=m+n/d and that for m=-n(mod d) m-(-n)>=d
m+n>=d.
 
You really should state completely what you mean then. e.g.

(a+1)*(c-d)/a is an integer

or, if you prefer,

a | (a+1)*(c-d)


Anyways, you know that gcd(b, a) = 1. From this, we can conclude there are u and v such that:

bu + av = 1

Or

(bu = 1) mod a

This u is the mod a multiplicative inverse of b. Once you know b is invertible, the rest of the proof looks just like what you'd do in ordinary arithmetic.


As to the proof of this gcd property, I'll leave it as a series of exercises.

Given integers m and n not both zero, define
S = {um + vn | u and v are integers and ua + vb > 0}
and let d be the minimum value in S.

Step 1:
Prove that if p and q are elements of S, then for any integers x and y, xp + yq is an element of S if it is positive.

Step 2:
Prove that d divides every element of S.
(Hint: use the division algorithm, step 1, and the fact that d is the minimum value in s)

Step 3:
Prove that |m| and |n| are elements of S. This implies that d divides m and d divides n.

Step 4:
Prove that if c is any common divisor of m and n, then c divides d.

Conclude that d defined in this way is the greatest common divisor of m and n.
 
Originally posted by Hurkyl


Step 1:
Prove that if p and q are elements of S, then for any integers x and y, xp + yq is an element of S if it is positive.


i don't think this statement is true because if x and y are both negative and p and q are both positive then xp+yq would be negative.
 
Which is why I said

xp + yq is an element of S if it is positive.

(added emphasis)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top