Dustinsfl
- 2,217
- 5
Traffic is moving with a uniform density of \rho_0.
$$
\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = \beta_0
$$
where
$$
c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right).
$$
Show that the variation of the initial density distribution is given by
$$
\rho = \beta_0t + \rho(x_0,0)
$$
along a characteristic emanating from x = x_0 described by
$$
x = x_0 + u_{\text{max}}\left(1 - \frac{2\rho(x_0,0)}{\rho_{\text{max}}}\right)t - \beta_0\frac{u_{\text{max}}}{\rho_{\text{max}}}t.
$$
So we have \frac{dt}{ds} = 1, \frac{dx}{ds}=c(\rho) and \frac{d\rho}{ds} = \beta_0.
Then t(s) = s + c where t=s when t(0) = 0.
Not sure how to handle the other two though.
$$
\frac{\partial\rho}{\partial t} + c(\rho)\frac{\partial\rho}{\partial x} = \beta_0
$$
where
$$
c(\rho) = u_{\text{max}}\left(1 - \frac{2\rho}{\rho_{\text{max}}}\right).
$$
Show that the variation of the initial density distribution is given by
$$
\rho = \beta_0t + \rho(x_0,0)
$$
along a characteristic emanating from x = x_0 described by
$$
x = x_0 + u_{\text{max}}\left(1 - \frac{2\rho(x_0,0)}{\rho_{\text{max}}}\right)t - \beta_0\frac{u_{\text{max}}}{\rho_{\text{max}}}t.
$$
So we have \frac{dt}{ds} = 1, \frac{dx}{ds}=c(\rho) and \frac{d\rho}{ds} = \beta_0.
Then t(s) = s + c where t=s when t(0) = 0.
Not sure how to handle the other two though.