Ok, just let's do the simple math. Let's assume we argued from Kepler's 2nd Law, which is nothing else than the conservation of angular momentum that the orbit is in a plane perpendicular to the angular-momentum vector, and now we introduce polar coordinates. The Cartesian coordinates are given by the polar coordinates as
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r \cos \varphi \\ r \sin \varphi \end{pmatrix}.$$
From this we calculate the velocity vector,
$$\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} \dot{r} \cos \varphi - r \dot{\varphi} \sin \varphi \\ \dot{r} \sin \varphi + r \dot{\varphi} \cos \varphi \end{pmatrix},$$
and the acceleration
$$\begin{pmatrix} a_x \\ a_y \end{pmatrix} = \begin{pmatrix} \dot{v}_x \\ \dot{v}_y \end{pmatrix} = \begin{pmatrix} \ddot{r} \cos \varphi -2 \dot{r} \dot{\varphi} \sin \varphi -r \dot{\varphi}^2 \cos \varphi -r \ddot{\varphi} \sin \varphi \\ \ddot{r} \sin \varphi + 2 \dot{r} \dot{\varphi} \cos \varphi +r \ddot{\varphi} \cos \varphi -r \dot{\varphi}^2 \sin \varphi \end{pmatrix}.$$
Now it's easy to project the vectors to the curvilinear orthonormal basis,
$$\vec{e}_r=\partial_r \vec{x}=\begin{pmatrix} \cos \varphi \sin \varphi \end{pmatrix}, \quad \vec{e}_{\varphi} = \frac{1}{r} \partial_{\varphi} \vec{x}=\begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix}.$$
You get
$$a_{r} = \vec{e}_r \cdot \vec{r} = \ddot{r}-r \dot{\varphi}^2, \quad a_{\varphi}=r \ddot{\varphi} + 2 \dot{r} \dot{\varphi}.$$
The force is
$$\vec{F}=-\frac{\gamma m M}{r^2} \vec{e}_r,$$
and thus the equations of motion read
$$\ddot{r}-r \dot{\varphi}^2=-\frac{\gamma M}{r^2}, \quad r \ddot{\varphi} + 2 \dot{r} \dot \varphi=0.$$
Of course, we already now that the angular momentum is conserved, i.e.,
$$\ell=m (x \dot{y}-y \dot{x})=m r^2 \dot{\varphi}=\text{const}.$$
Indeed, taking the derivative of this equation wrt. time, you get the 2nd equation of motion (the ##\varphi##-component).
I think the rest of the calculation is really very nicely explained in the linked manuscriped of posting #1, though I think it's much more elegant to use the Runge-Lenz vector ;-).