What is the difference between friction and rolling resistance?

AI Thread Summary
The discussion clarifies the distinction between friction and rolling resistance in the context of a cyclist moving uphill. It emphasizes that when bicycle wheels roll without slipping, the coefficients of friction are not necessary for solving the problem. The focus should be on the force the cyclist applies rather than on frictional forces, especially when the bicycle is slowing down on an incline. Participants highlight the importance of accurately interpreting the problem statement and equations provided. Understanding this difference is crucial for correctly analyzing the forces at play in such scenarios.
paulimerci
Messages
287
Reaction score
47
Poster has been reminded to always show their work when posting schoolwork problems
Homework Statement
A 65 kg cyclist on a 10 kg bicycle is moving uphill on a 9° slope. How much force does he provide
if the bicycle slows at a rate of 0.3 m/s2?
Relevant Equations
Applied force - frictional force - parallel force component due to gravity = ma
How to find frictional force when coefficient of friction is not given?
 

Attachments

  • Screen Shot 2022-11-09 at 1.43.06 PM.png
    Screen Shot 2022-11-09 at 1.43.06 PM.png
    9.9 KB · Views: 98
Physics news on Phys.org
If the bicycle wheels roll without slipping or are not on the verge of slipping, the coefficients of friction are irrelevant. You have the acceleration, so what is the net force on the bicycle + cyclist system? What is the net force just on the bicycle?
 
  • Like
Likes topsquark
So you mean there is no frictional force acting on the system?
 
paulimerci said:
So you mean there is no frictional force acting on the system?
Not what he means.

He said that you don't need to know the frictional force to solve this problem.
 
  • Like
Likes topsquark
SammyS said:
Not what he means.

He said that you don't need to know the frictional force to solve this problem.
But it’s asking for the force the rider provides, not the net force.

I feel like “ignore friction” should be right in the problem statement on this one?
 
Last edited:
paulimerci said:
Homework Statement:: A 65 kg cyclist on a 10 kg bicycle is moving uphill on a 9° slope. How much force does he provide
if the bicycle slows at a rate of 0.3 m/s2?
Relevant Equations:: Applied force - frictional force - parallel force component due to gravity = ma

How to find frictional force when coefficient of friction is not given?
@paulimerci -- Please post a new thread with this problem and show your work.

As you can see from the replies, this is most likely not a problem of something sliding up or down an inclined plane with sliding friction coming into play. If a bicyclist is pedaling up a slope and slowing down, there is a force that the bicyclist is applying by pedaling but it's not enough force to keep them from slowing down on the slope. So in your FBD, you should leave off any retarding force due to sliding friction, and focus on what force the bicyclist needs to exert to result in the motion specified in the problem.
 
  • Like
Likes SammyS
Disregard post #5. I think I see what @kuruman was driving at now that I've written it down.
 
paulimerci said:
Homework Statement:: A 65 kg cyclist on a 10 kg bicycle is moving uphill on a 9° slope. How much force does he provide
if the bicycle slows at a rate of 0.3 m/s2?
Relevant Equations:: Applied force - frictional force - parallel force component due to gravity = ma

How to find frictional force when coefficient of friction is not given?
You are suffering from a common confusion between friction and rolling resistance. The relevant equation posted takes friction as always something opposing motion, which is incorrect.
Please read https://www.physicsforums.com/insights/frequently-made-errors-mechanics-friction/ before reposting the thread .
 
  • Like
Likes paulimerci, berkeman and SammyS
Back
Top