kaosAD
- 33
- 0
I have questions regarding this subject.
By definition, \limsup_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \sup_{n \geq k} f(x_n) and \liminf_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \inf_{n \geq k} f(x_n). Say a sequence \{x_k\} converging to 0 from the left in the following example.
f(y) = \left\{ <br /> \begin{array}{ll}<br /> y + 1 & \quad ,y > 0 \\<br /> y & \quad ,y \leq 0<br /> \end{array}<br /> \right.
Then \limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) = f(0).
Suppose we have another sequence \{x_k\} converging to 0 from the right. Then \limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) > f(0).
What is the difference between \limsup_{k \to \infty} f(x_k) and \liminf_{k \to \infty} f(x_k)? I don't see any difference.
By definition, \limsup_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \sup_{n \geq k} f(x_n) and \liminf_{k \to \infty} f(x_k) \equiv \lim_{k \to \infty} \inf_{n \geq k} f(x_n). Say a sequence \{x_k\} converging to 0 from the left in the following example.
f(y) = \left\{ <br /> \begin{array}{ll}<br /> y + 1 & \quad ,y > 0 \\<br /> y & \quad ,y \leq 0<br /> \end{array}<br /> \right.
Then \limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) = f(0).
Suppose we have another sequence \{x_k\} converging to 0 from the right. Then \limsup_{k \to \infty} f(x_k) = \liminf_{k \to \infty} f(x_k) > f(0).
What is the difference between \limsup_{k \to \infty} f(x_k) and \liminf_{k \to \infty} f(x_k)? I don't see any difference.
Last edited: