What is the differentiability of f(z) using Cauchy-Riemann equations?

  • Thread starter Thread starter ak123456
  • Start date Start date
ak123456
Messages
50
Reaction score
0

Homework Statement


Using Cauchy-Riemann equations show that f(z)=Re(z)Im(z)+i Im(z) is differentiable at only one point in C and find this point

Homework Equations





The Attempt at a Solution


no idea about this question , can i set Re(z)=u Im(z)=v
then U=uv V=v
and the point is o ?
 
Physics news on Phys.org
If z = x + iy, then Re(z) = x and Im(z) = y.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top