What Is the Distribution of the First Failure Time for Two Independent Machines?

AI Thread Summary
The discussion revolves around determining the distribution of the first failure time for two independent machines, M1 and M2, which fail with probabilities p1 and p2, respectively. The random variables X1 and X2 represent the number of runs until the first failure of each machine and are geometrically distributed. The key point is that the number of runs until the first failure of either machine, denoted as X, also follows a geometric distribution with the parameter p1 + p2 - p1p2. Participants confirm the logic of using probability distributions to derive the result, emphasizing the independence of events and the application of the product and sum rules in probability. The conclusion affirms that the approach is valid under the stated assumptions.
topgun08
Messages
15
Reaction score
0
Question:
Two faulty machines, M1 and M2, are repeatedly run synchronously in parallel (i.e., both machines execute
one run, then both execute a second run, and so on). On each run, M1 fails with probability p1 and M2 with
probability p2, all failure events being independent. Let the random variables X1, X2 denote the number of
runs until the first failure of M1, M2 respectively; thus X1, X2 have geometric distributions with parameters
p1, p2 respectively.
Let X denote the number of runs until the first failure of either machine. Show that X also has a geometric
distribution, with parameter p1 + p2 − p1p2

Attempt at an answer:
X1 has a geometric distribution of (1-p1)^i-1 * p1
X2 has a geometric distribution of (1-p2)^i-1 * p2

I'm confused an don't know how to proceed. Any help is appreciated.
 
Physics news on Phys.org
topgun08 said:
Question:
Two faulty machines, M1 and M2, are repeatedly run synchronously in parallel (i.e., both machines execute
one run, then both execute a second run, and so on). On each run, M1 fails with probability p1 and M2 with
probability p2, all failure events being independent. Let the random variables X1, X2 denote the number of
runs until the first failure of M1, M2 respectively; thus X1, X2 have geometric distributions with parameters
p1, p2 respectively.
Let X denote the number of runs until the first failure of either machine. Show that X also has a geometric
distribution, with parameter p1 + p2 − p1p2

Attempt at an answer:
X1 has a geometric distribution of (1-p1)^i-1 * p1
X2 has a geometric distribution of (1-p2)^i-1 * p2

I'm confused an don't know how to proceed. Any help is appreciated.

Hey topgun08.

I'll start with one hint: in terms of failures, consider the probability distribution P(X1 OR X2)
 
After much deliberation here's what I arrived at.

Consider both machines as biased coins such that Tails means the machine fails and Heads means it runs. Thus for Machine1 and Machine 2,
Pr[T1] = p1 and Pr[H1] = 1-p1
Pr[T2] = p2 and Pr

= 1-p2

So the running of both machines can be considered as flipping both these biased coins together, giving us the below table:

Pr[H1H2] = (1-p1)(1-p2)
Pr[H1T2] = (1-p1)(p2) = p2-p1p2
Pr[T1H2] = (p1)(1-p2) = p1-p1p2
Pr[T1T2] = (p1)(p2) = p1p2

And the questions asks for when either machine fails, so adding the probabilities that contain a tails together:
Pr[H1T2] + Pr[T1H2] + Pr[T1T2] = p2-p1p2 + p1-p1p2 + p1p2 = p2 + p1 - p1p2

Which is equal to what the question gave us. Please let me know if my logic is sound or if there's a better way to solve this, and thank you for your help!

 
topgun08 said:
After much deliberation here's what I arrived at.

Consider both machines as biased coins such that Tails means the machine fails and Heads means it runs. Thus for Machine1 and Machine 2,
Pr[T1] = p1 and Pr[H1] = 1-p1
Pr[T2] = p2 and Pr

= 1-p2

So the running of both machines can be considered as flipping both these biased coins together, giving us the below table:

Pr[H1H2] = (1-p1)(1-p2)
Pr[H1T2] = (1-p1)(p2) = p2-p1p2
Pr[T1H2] = (p1)(1-p2) = p1-p1p2
Pr[T1T2] = (p1)(p2) = p1p2

And the questions asks for when either machine fails, so adding the probabilities that contain a tails together:
Pr[H1T2] + Pr[T1H2] + Pr[T1T2] = p2-p1p2 + p1-p1p2 + p1p2 = p2 + p1 - p1p2

Which is equal to what the question gave us. Please let me know if my logic is sound or if there's a better way to solve this, and thank you for your help!



That looks pretty good, and the logic looks very sound.

Since events are independent you can apply product rule and since the events are disjoint you can simply add them together so under these two assumptions the algebra should work.

If the events were not independent or the events were not disjoint this would not work, but since this is not the case it should be ok.

 
I was reading documentation about the soundness and completeness of logic formal systems. Consider the following $$\vdash_S \phi$$ where ##S## is the proof-system making part the formal system and ##\phi## is a wff (well formed formula) of the formal language. Note the blank on left of the turnstile symbol ##\vdash_S##, as far as I can tell it actually represents the empty set. So what does it mean ? I guess it actually means ##\phi## is a theorem of the formal system, i.e. there is a...
Back
Top