What is the Electric Field of a Cylindrical Capacitor?

AI Thread Summary
The discussion focuses on calculating the electric field between two coaxial cylinders, with the participant struggling to derive the correct formula. They initially propose that the electric field should be Q/(2πε₀Lr) for the space between the cylinders and Q/(4πε₀Lr) for a single cylinder. The participant attempts to derive the electric field using integration and considers the impact of a test charge placed in the field. They receive advice to apply Gauss's Law, which simplifies the process, leading to a realization about the appropriate Gaussian surface to use. The conversation highlights the importance of choosing the correct approach in solving complex electrostatic problems.
AKG
Science Advisor
Homework Helper
Messages
2,559
Reaction score
4
For some reason, I am having a lot of difficulty finding the electric field between two co-axial cylinders. In fact, I pretty much know that it should be:

\frac{Q}{2\pi \epsilon _0 Lr}

Where Q and -Q are the charges on the two cylinders, L is the length of the cylinders, and r is the distance from the axis. But I don't know how to come to this formula. It appears to me from this that the electric field of one cylinder would be:

\frac{Q}{4 \pi \epsilon _0 L r}

where, again, r is the distance from the axis, and it wouldn't matter if r were greater than the radius or less than it. Anyways, I've been trying to find the electric field of one cylinder, then I'll add the two to get the electric field between the two. If we place the cylinder so that it's axis is the z axis, and we place a test charge at some point (r, 0, 0), the only field at this point will point in the x direction.

So I get:

E(r,0,0) = \int \frac{\sigma da}{4\pi \epsilon _0}\frac{1}{((r - x)^2 + y^2 + z^2)^{3/2}}(r - x, y, z)

But since only the field in the x direction will really matter, we can say:

E(r,0,0) = \hat{x}\frac{\sigma}{4\pi \epsilon _0}\int \frac{da (r - x)}{((r - x)^2 + y^2 + z^2)^{3/2}}

Now, da will not vary with the z position or the azimuthal angle \phi, so da = c\, dz\, d\phi, for some constant real c. Since the area is 2\pi RL, where R is the radius of the cylinder, L is its length, then c = R. Therefore, we get:

E(r,0,0) = \hat{x}\frac{R \sigma}{4\pi \epsilon _0}\int _0 ^{2\pi} \int _{-L/2} ^{L/2} \frac{dz\, d\phi \, (r - R\cos \phi)}{((r - R\cos \phi)^2 + (R\sin \phi)^2 + z^2)^{3/2}}

Am I on the right track? From here, I've tried substiting something in the form z = Atan(phi), and I get somewhere, but it eventually gets very ugly and unsolvable. I've been trying this for hours, help is greatly appreciated. Thanks.
 
Physics news on Phys.org
Try to use the Gauss's law instead...because is simpler!
 
Thanks clive, somehow, what you said helped. I actually tried using Gauss's Law before, but wasn't using the right kind of Gaussian surface; somehow, after reading your post, I instantly knew what type of surface to use. Thanks.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top