MHB What is the factorization of $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$?

AI Thread Summary
The polynomial $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$ can be factored using the roots $x=-\frac{3}{2}y$ and $x=\frac{5}{3}y$. Applying the Ruffini algorithm leads to the factorization $P(x,y) = (2x+3y)(3x-5y)(5x^2-6yx-10y^2)$. Further solving the quadratic $5x^2-6yx-10y^2$ yields additional roots, resulting in the complete factorization $5(2x+3y)(3x-5y)\left(x-\frac{3+\sqrt{59}}{5}y\right)\left(x-\frac{3-\sqrt{59}}{5}y\right)$. This method effectively utilizes the rational roots theorem and polynomial division techniques for homogeneous polynomials.
paulmdrdo1
Messages
382
Reaction score
0
Factor $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$.
Please help me get started. I tried grouping the terms but still can't see any factorization that is familiar to me.

Thanks.
 
Mathematics news on Phys.org
paulmdrdo said:
Factor $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$.

Consider $$P_y(x)=30x^4+(-41y)x^3+(-129y^2)x^2+(100y^3)x+150y^4$$ as a polynomial in $x$ and $y$ as a parameter Suppose there are roots of the form $x=ky$. Then, $$P_y(ky)=\left(30k^4-41k^3-129k^2+100k+150\right)y^4=0.$$ Consider the equation $$30k^4-41k^3-129k^2+100k+150=0.$$ Using the theorem of the rational roots we get $k=-3/2$ and $k=5/3$, so $x=-(3/2)y$ and $x=(5/3)y$ are roots of $P_y(x)$ for all $y$, so: $$P_y(x)=\left(x+\frac{3}{2}y\right)\left(x-\frac{5}{3}y\right)q(x,y).$$ Could you continue?
 
I'm still not sure how to continue from there. Do I need to use rational roots theorem?

And What do you call that method? Does this always work on the polynomials that has the same form I posted?
 
Last edited:
paulmdrdo said:
I'm still not sure how to continue from there. Do I need to use rational roots theorem?

Using the Ruffini Algorithm for the root $x=-\dfrac{3}{2}y$
$$\begin{array}{r|rrrrr}
& 30 & -41y & -129y^2 & 100y^3 & 150y^4 \\
-\dfrac{3}{2}y & & -45y & 129y^2 & 0 & -150y^4 \\
\hline & 30 & -86y & 0 & 100y^3 & 0\end{array}$$
This implies $$p(x,y)=\left(x+\frac{3}{2}y\right)(\underbrace{30x^3-86yx^2+100y^3}_{Q(x,y)}).$$
Now, decompose $Q(x,y)$ in the same way with the root $x=\dfrac{5}{3}y$.

paulmdrdo said:
And What do you call that method? Does this always work on the polynomials that has the same form I posted?

No name, this is a strategy in this particular case, based in the fact that the polynomial is homogeneous, testing linear factors, and all of this with the "hope" that the equation in $k$ has rational roots.
 
I,ve decided to complete the solution:

Applying the Ruffini algorithm to $Q_1(x,y)$: $$\begin{array}{r|rrrrr}
& 30 & -86y & 0 & 100y^3 \\
\dfrac{5}{3}y & & 50y & -60y^2 & -100y^3 \\
\hline & 30 & -36y & -60y^2 & 0 \end{array}$$ $$\Rightarrow P(x,y)=\left(x+\frac{3}{2}y\right)(\underbrace{30x^3-86yx^2+100y^3}_{Q_1(x,y)})$$ $$=\left(x+\frac{3}{2}y\right)\left(x-\frac{5}{3}y\right)\left(30x^2-36yx-60y^2\right)$$ $$=\dfrac{1}{6}(2x+3y)(3x-5y)\left(30x^2-36yx-60y^2\right)$$ $$=(2x+3y)(3x-5y)\left(5x^2-6yx-10y^2\right).$$
Let us now factorice $Q_2(x,y)=5x^2-6yx-10y^2$. Solving the quadratic equation on $x$: $$5x^2-6yx-10y^2=0,\quad x=\dfrac{6y\pm \sqrt{236y^2}}{10}=\dfrac{6y\pm 2\sqrt{59}y}{10},$$ $$x=\dfrac{3+\sqrt{59}}{5}y,\quad x=\dfrac{3-\sqrt{59}}{5}y$$ So, we can write:
$$\boxed{\; P(x,y)=5(2x+3y)(3x-5y)\left(x-\dfrac{3+\sqrt{59}}{5}y\right)\left(x-\dfrac{3-\sqrt{59}}{5}y\right)\;}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top