I,ve decided to complete the solution:
Applying the Ruffini algorithm to $Q_1(x,y)$: $$\begin{array}{r|rrrrr}
& 30 & -86y & 0 & 100y^3 \\
\dfrac{5}{3}y & & 50y & -60y^2 & -100y^3 \\
\hline & 30 & -36y & -60y^2 & 0 \end{array}$$ $$\Rightarrow P(x,y)=\left(x+\frac{3}{2}y\right)(\underbrace{30x^3-86yx^2+100y^3}_{Q_1(x,y)})$$ $$=\left(x+\frac{3}{2}y\right)\left(x-\frac{5}{3}y\right)\left(30x^2-36yx-60y^2\right)$$ $$=\dfrac{1}{6}(2x+3y)(3x-5y)\left(30x^2-36yx-60y^2\right)$$ $$=(2x+3y)(3x-5y)\left(5x^2-6yx-10y^2\right).$$
Let us now factorice $Q_2(x,y)=5x^2-6yx-10y^2$. Solving the quadratic equation on $x$: $$5x^2-6yx-10y^2=0,\quad x=\dfrac{6y\pm \sqrt{236y^2}}{10}=\dfrac{6y\pm 2\sqrt{59}y}{10},$$ $$x=\dfrac{3+\sqrt{59}}{5}y,\quad x=\dfrac{3-\sqrt{59}}{5}y$$ So, we can write:
$$\boxed{\; P(x,y)=5(2x+3y)(3x-5y)\left(x-\dfrac{3+\sqrt{59}}{5}y\right)\left(x-\dfrac{3-\sqrt{59}}{5}y\right)\;}$$