MHB What is the factorization of $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$?

AI Thread Summary
The polynomial $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$ can be factored using the roots $x=-\frac{3}{2}y$ and $x=\frac{5}{3}y$. Applying the Ruffini algorithm leads to the factorization $P(x,y) = (2x+3y)(3x-5y)(5x^2-6yx-10y^2)$. Further solving the quadratic $5x^2-6yx-10y^2$ yields additional roots, resulting in the complete factorization $5(2x+3y)(3x-5y)\left(x-\frac{3+\sqrt{59}}{5}y\right)\left(x-\frac{3-\sqrt{59}}{5}y\right)$. This method effectively utilizes the rational roots theorem and polynomial division techniques for homogeneous polynomials.
paulmdrdo1
Messages
382
Reaction score
0
Factor $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$.
Please help me get started. I tried grouping the terms but still can't see any factorization that is familiar to me.

Thanks.
 
Mathematics news on Phys.org
paulmdrdo said:
Factor $30x^4-41x^3y-129x^2y^2+100xy^3+150y^4$.

Consider $$P_y(x)=30x^4+(-41y)x^3+(-129y^2)x^2+(100y^3)x+150y^4$$ as a polynomial in $x$ and $y$ as a parameter Suppose there are roots of the form $x=ky$. Then, $$P_y(ky)=\left(30k^4-41k^3-129k^2+100k+150\right)y^4=0.$$ Consider the equation $$30k^4-41k^3-129k^2+100k+150=0.$$ Using the theorem of the rational roots we get $k=-3/2$ and $k=5/3$, so $x=-(3/2)y$ and $x=(5/3)y$ are roots of $P_y(x)$ for all $y$, so: $$P_y(x)=\left(x+\frac{3}{2}y\right)\left(x-\frac{5}{3}y\right)q(x,y).$$ Could you continue?
 
I'm still not sure how to continue from there. Do I need to use rational roots theorem?

And What do you call that method? Does this always work on the polynomials that has the same form I posted?
 
Last edited:
paulmdrdo said:
I'm still not sure how to continue from there. Do I need to use rational roots theorem?

Using the Ruffini Algorithm for the root $x=-\dfrac{3}{2}y$
$$\begin{array}{r|rrrrr}
& 30 & -41y & -129y^2 & 100y^3 & 150y^4 \\
-\dfrac{3}{2}y & & -45y & 129y^2 & 0 & -150y^4 \\
\hline & 30 & -86y & 0 & 100y^3 & 0\end{array}$$
This implies $$p(x,y)=\left(x+\frac{3}{2}y\right)(\underbrace{30x^3-86yx^2+100y^3}_{Q(x,y)}).$$
Now, decompose $Q(x,y)$ in the same way with the root $x=\dfrac{5}{3}y$.

paulmdrdo said:
And What do you call that method? Does this always work on the polynomials that has the same form I posted?

No name, this is a strategy in this particular case, based in the fact that the polynomial is homogeneous, testing linear factors, and all of this with the "hope" that the equation in $k$ has rational roots.
 
I,ve decided to complete the solution:

Applying the Ruffini algorithm to $Q_1(x,y)$: $$\begin{array}{r|rrrrr}
& 30 & -86y & 0 & 100y^3 \\
\dfrac{5}{3}y & & 50y & -60y^2 & -100y^3 \\
\hline & 30 & -36y & -60y^2 & 0 \end{array}$$ $$\Rightarrow P(x,y)=\left(x+\frac{3}{2}y\right)(\underbrace{30x^3-86yx^2+100y^3}_{Q_1(x,y)})$$ $$=\left(x+\frac{3}{2}y\right)\left(x-\frac{5}{3}y\right)\left(30x^2-36yx-60y^2\right)$$ $$=\dfrac{1}{6}(2x+3y)(3x-5y)\left(30x^2-36yx-60y^2\right)$$ $$=(2x+3y)(3x-5y)\left(5x^2-6yx-10y^2\right).$$
Let us now factorice $Q_2(x,y)=5x^2-6yx-10y^2$. Solving the quadratic equation on $x$: $$5x^2-6yx-10y^2=0,\quad x=\dfrac{6y\pm \sqrt{236y^2}}{10}=\dfrac{6y\pm 2\sqrt{59}y}{10},$$ $$x=\dfrac{3+\sqrt{59}}{5}y,\quad x=\dfrac{3-\sqrt{59}}{5}y$$ So, we can write:
$$\boxed{\; P(x,y)=5(2x+3y)(3x-5y)\left(x-\dfrac{3+\sqrt{59}}{5}y\right)\left(x-\dfrac{3-\sqrt{59}}{5}y\right)\;}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top