I'm not sure about a general formula just yet, but this might be helpful: if you associate each factorial with a sequence (an,k)k in N, where an,k is the power of the kth prime in n!, you get:
(a0,k) = (0, 0, ...)
(a1,k) = (0, 0, ...)
(a2,k) = (1, 0, 0, ...)
(a3,k) = (1, 1, 0, 0, ...)
(3, 1, 0, 0, ...)
(3, 1, 1, 0, 0, ...)
(4, 2, 1, 0, 0, ...)
(4, 2, 1, 1, 0, 0, ...)
(7, 2, 1, 1, 0, 0, ...)
(7, 4, 1, 1, 0, 0, ...)
(8, 4, 2, 1, 0, 0, ...)
(8, 4, 2, 1, 1, 0, 0, ...)
(10, 5, 2, 1, 1, 0, 0, ...)
(10, 5, 2, 1, 1, 1, 0, 0, ...)
(11, 5, 2, 2, 1, 1, 0, 0, ...)
The exponent of 2 changes every 2 rows, the exponent of 3 changes every 3 rows, the exponent of p will change every p rows. Ignoring repetition, the exponents for 2 go: 0, 1, 3, 4, 7, 8, 10, 11, ...
For 3, they go 0, 1, 2, 4, 5, ...
For 5, they go 0, 1, 2, ...
Some numbers are skipped in the above sequences because powers occur, i.e. in the sequence for 2, it goes from 1 to 3 without going through 2 because the 4 in 4! contributes two 2's, not just 1. I'm very tired right now, but I suppose if you can generalize what's going on here, it might be a helpful step in finding a general formula.
Well I suppose if you just want to know the general formula and aren't trying to figure it out yourself, then the above isn't much help.