What is the fourth term of an arithmetic sequence with specific given terms?

sabanation12
Messages
21
Reaction score
0
Our 8th grade math counts team met today and I didnt know how to do this problem:

The first three terms of an arithmetic sequence are p, 2p+6, and 5p-12. What is the 4th term of this sequence?

Please explain how to do this.

Arigato!
 
Mathematics news on Phys.org
please help me
 
Its not an arithmetic progression... and don't bump. In an AP the difference between consecutive terms is constant (i.e. t1-t0=t2-t1 and so forth.) In this case (2p+6)-p=5p-12-(2p+6)
p+6=3p-18
2p=24
p=12
Only true when p=12. For all other cases it is not an AP.
 
so, is that the solution? p=12 and a difference of 18 between two consecutive numbers?

2p-12 <- simplifies to p, of course, if you know p=12
2p+6
5p-12
5p+6
8p-12
8p+6
.
.
.
 
hyurnat4 said:
Its not an arithmetic progression... and don't bump. In an AP the difference between consecutive terms is constant (i.e. t1-t0=t2-t1 and so forth.) In this case (2p+6)-p=5p-12-(2p+6)
p+6=3p-18
2p=24
p=12
Only true when p=12. For all other cases it is not an AP.

No I believe you are wrong, it IS an arithmetic sequence. Let me explain...

P does equal 12, and the difference between them is 18, so:

an = a1 + (n-1) * d

Plugging in numbers:

an = 12 + (4-1) * 18

so the fourth number is 66

Thanks for your help anyways :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top