What Is the Inner Product <V,s> in Complex Vector Projections?

polaris90
Messages
45
Reaction score
0
I need some clarification on projections of complex vectors. If I have a nxm matrix of complex numbers V and a mx1 matrix s, and I want to find the projection of s onto any column of V. The formula to do this is

c = <V, s>/||V(j)||^2 where V(j) is the column of V to be used. My question is, what is <V,s>? is that the inner product of the whole matrix V with s, or is it the inner product of V(j) with s? Where V or V(j) would be the Hermition of the vector.
 
Physics news on Phys.org
Where did you find this formula? I'm only familiar with projections of vectors onto other vectors and onto subspaces. I have no idea what <V,s> means, or what the projection of s onto V(j) means, since V(j) isn't a member of the same vector space as s.
 
I see I wasn't clear on my question. What I meant is the projection of vector vector s onto a vector V. By V(j) I meant a column of matrix V. <V, s> is the inner product of V and s. I know about projections of one vector onto another vector when they are all real numbers. In this case, I have a matrix V with complex numbers. I want to project s onto a column of V. I hope my question is clearer now.
 
But if V is an n×m matrix and s is not, how can you be talking about the inner product of V and s? An inner product takes two members of a vector space (the same vector space) to a number, but V and s aren't in the same vector space. Also, if s is m×1, and V(j) is n×1, they're not in the same vector space either (unless of course n=m).

Another thing: You seem to be thinking of "vectors" as ordered sets of numbers. That's not always the case. The members of any vector space are called vectors. A vector space V is considered "complex" when the scalar multiplication operation is a function from V×ℂ into V. There are real vector spaces whose members are matrices with complex entries.
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top