a_Vatar
- 18
- 0
Hi,
I'm trying to evaluate this integral over a hemisphere:
\int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} dw
where dw - solid angle measure,\phi is azimuthal angle and \theta
is polar angle.
Thus we have:
\int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} dw = \int \int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta d\phi.
over hemishere.
Integral = \int^{2 * pi}_{0} \int^{pi/2}_{0}cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta d\phi
evaluate inner integral:
making substitution u = cos(\theta),
\int^{pi/2}_{0}cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta = <br /> - \int^{pi/2}_{0}u^{a*cos^2(\phi) + b*sin^2(\phi)} du = \frac{1}{a*cos^2(\phi) + b*sin^2(\phi) + 1}
That's where I get stuck with integration wrt \phi
Apparently this integral has to evaluate to \frac{1}{\sqrt{(a+1)(b+1)}}
I'm trying to evaluate this integral over a hemisphere:
\int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} dw
where dw - solid angle measure,\phi is azimuthal angle and \theta
is polar angle.
Thus we have:
\int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} dw = \int \int cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta d\phi.
over hemishere.
Integral = \int^{2 * pi}_{0} \int^{pi/2}_{0}cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta d\phi
evaluate inner integral:
making substitution u = cos(\theta),
\int^{pi/2}_{0}cos(\theta)^{a*cos^2(\phi) + b*sin^2(\phi)} * sin(\theta) d\theta = <br /> - \int^{pi/2}_{0}u^{a*cos^2(\phi) + b*sin^2(\phi)} du = \frac{1}{a*cos^2(\phi) + b*sin^2(\phi) + 1}
That's where I get stuck with integration wrt \phi
Apparently this integral has to evaluate to \frac{1}{\sqrt{(a+1)(b+1)}}