What is the Integration by Parts method used for?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The Integration by Parts method is utilized to solve integrals involving products of functions, particularly when one function simplifies upon differentiation. In the discussion, the integral of \( t(\ln(t))^2 \) is evaluated using the formula \( I = uv - \int v \, du \). The specific substitutions made include \( u = \ln^2(t) \) and \( dv = t \, dt \), leading to the final result of \( \frac{t^2(\ln(t))^2}{2} - \frac{t^2\ln(t)}{2} + \frac{t^2}{4} + C \).

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with the Integration by Parts formula
  • Knowledge of logarithmic functions and their properties
  • Ability to perform differentiation and integration of polynomial functions
NEXT STEPS
  • Study the application of the Integration by Parts method in different contexts
  • Learn about the LIATE rule for choosing \( u \) and \( dv \)
  • Explore advanced integration techniques such as substitution and partial fractions
  • Practice solving integrals involving products of exponential and logarithmic functions
USEFUL FOR

Students of calculus, mathematics educators, and anyone seeking to deepen their understanding of integration techniques, particularly in relation to logarithmic and polynomial functions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{Whitman 8.7.26 Integration by Parts} $ nmh{818}
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $

$\begin{align}\displaystyle
u& = t &
dv&=\left(\ln\left({t}\right) \right)^2 \ d{t} \\
du&= dt&
v& =t\left(\ln\left({t}\right)^2 - 2\ln\left({t}\right)+2\right)
\end{align}$
$\text{$v$ reintroduced $t$
so not sure of $u$ $dv$ substitutions } $
 
Last edited:
Physics news on Phys.org
According to LIATE, you should first try:

$$u=\ln^2(t)\,\therefore\, du=2\ln(t)\frac{1}{t}\,dt$$

$$dv=t\,dt\,\therefore\,v=\frac{t^2}{2}$$
 
$\tiny\text{Whitman 8.7.26 Integration by Parts} $
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $

$\begin{align}\displaystyle
u& = \ln^2 \left({t}\right) &
dv&= t \ dt \\
du&=\frac{2\ln\left({t}\right)}{t} \ dt&
v& =\frac{t^2}{2}
\end{align}$
So
$\displaystyle
\frac{{t}^{2}\ln^2 \left({t}\right)}{2}
-\int\frac{t^2}{2} \frac{2\ln\left({t}\right)}{t} \ dt
\implies\frac{{t}^{2}\ln^2 \left({t}\right)}{2}
-\int t \ln\left({t}\right) \ dt $
For
$\displaystyle
\int t \ln\left({t}\right) \ dt $

$\begin{align}\displaystyle
u& = \ln\left({t}\right) &
dv&= t \ dt \\
du&=\frac{1}{t} \ dt&
v& =\frac{t^2}{2}
\end{align}$

$\displaystyle\frac{{t}^{2}\ln\left({t}\right)}{2}
-\int\frac{t}{2} \ dt =\frac{{t}^{2}\ln\left({t}\right)}{2}- \frac{{t}^{2}}{4}$
and finally...
$\displaystyle
\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K