MHB What is the Integration by Parts method used for?

  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
The Integration by Parts method is utilized to solve integrals involving products of functions, particularly when one function simplifies upon differentiation. In the provided example, the integral of t multiplied by the square of the natural logarithm of t is evaluated. The process involves selecting appropriate substitutions for u and dv, leading to a breakdown of the integral into simpler components. The final result combines terms derived from these substitutions, yielding a complete expression for the integral. This method is essential for tackling complex integrals that cannot be solved through basic integration techniques.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{Whitman 8.7.26 Integration by Parts} $ nmh{818}
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $

$\begin{align}\displaystyle
u& = t &
dv&=\left(\ln\left({t}\right) \right)^2 \ d{t} \\
du&= dt&
v& =t\left(\ln\left({t}\right)^2 - 2\ln\left({t}\right)+2\right)
\end{align}$
$\text{$v$ reintroduced $t$
so not sure of $u$ $dv$ substitutions } $
 
Last edited:
Physics news on Phys.org
According to LIATE, you should first try:

$$u=\ln^2(t)\,\therefore\, du=2\ln(t)\frac{1}{t}\,dt$$

$$dv=t\,dt\,\therefore\,v=\frac{t^2}{2}$$
 
$\tiny\text{Whitman 8.7.26 Integration by Parts} $
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $

$\begin{align}\displaystyle
u& = \ln^2 \left({t}\right) &
dv&= t \ dt \\
du&=\frac{2\ln\left({t}\right)}{t} \ dt&
v& =\frac{t^2}{2}
\end{align}$
So
$\displaystyle
\frac{{t}^{2}\ln^2 \left({t}\right)}{2}
-\int\frac{t^2}{2} \frac{2\ln\left({t}\right)}{t} \ dt
\implies\frac{{t}^{2}\ln^2 \left({t}\right)}{2}
-\int t \ln\left({t}\right) \ dt $
For
$\displaystyle
\int t \ln\left({t}\right) \ dt $

$\begin{align}\displaystyle
u& = \ln\left({t}\right) &
dv&= t \ dt \\
du&=\frac{1}{t} \ dt&
v& =\frac{t^2}{2}
\end{align}$

$\displaystyle\frac{{t}^{2}\ln\left({t}\right)}{2}
-\int\frac{t}{2} \ dt =\frac{{t}^{2}\ln\left({t}\right)}{2}- \frac{{t}^{2}}{4}$
and finally...
$\displaystyle
\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
 
Last edited:
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K