MHB What is the Integration by Parts method used for?

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny\text{Whitman 8.7.26 Integration by Parts} $ nmh{818}
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $

$\begin{align}\displaystyle
u& = t &
dv&=\left(\ln\left({t}\right) \right)^2 \ d{t} \\
du&= dt&
v& =t\left(\ln\left({t}\right)^2 - 2\ln\left({t}\right)+2\right)
\end{align}$
$\text{$v$ reintroduced $t$
so not sure of $u$ $dv$ substitutions } $
 
Last edited:
Physics news on Phys.org
According to LIATE, you should first try:

$$u=\ln^2(t)\,\therefore\, du=2\ln(t)\frac{1}{t}\,dt$$

$$dv=t\,dt\,\therefore\,v=\frac{t^2}{2}$$
 
$\tiny\text{Whitman 8.7.26 Integration by Parts} $
$\displaystyle
I=\int t
\left(\ln\left({t}\right) \right)^2
\ d{t}
=\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
$\displaystyle uv-\int v \ d{u} $

$\begin{align}\displaystyle
u& = \ln^2 \left({t}\right) &
dv&= t \ dt \\
du&=\frac{2\ln\left({t}\right)}{t} \ dt&
v& =\frac{t^2}{2}
\end{align}$
So
$\displaystyle
\frac{{t}^{2}\ln^2 \left({t}\right)}{2}
-\int\frac{t^2}{2} \frac{2\ln\left({t}\right)}{t} \ dt
\implies\frac{{t}^{2}\ln^2 \left({t}\right)}{2}
-\int t \ln\left({t}\right) \ dt $
For
$\displaystyle
\int t \ln\left({t}\right) \ dt $

$\begin{align}\displaystyle
u& = \ln\left({t}\right) &
dv&= t \ dt \\
du&=\frac{1}{t} \ dt&
v& =\frac{t^2}{2}
\end{align}$

$\displaystyle\frac{{t}^{2}\ln\left({t}\right)}{2}
-\int\frac{t}{2} \ dt =\frac{{t}^{2}\ln\left({t}\right)}{2}- \frac{{t}^{2}}{4}$
and finally...
$\displaystyle
\frac{{t}^{2}\left(\ln\left({t}\right)\right)^2 }{2}
-\frac{{t}^{2}\left(\ln\left({t}\right)\right) }{2}
+\frac{{t}^{2}}{4}
+ C$
 
Last edited:
I've encountered a few different definitions of "indefinite integral," denoted ##\int f(x) \, dx##. any particular antiderivative ##F:\mathbb{R} \to \mathbb{R}, F'(x) = f(x)## the set of all antiderivatives ##\{F:\mathbb{R} \to \mathbb{R}, F'(x) = f(x)\}## a "canonical" antiderivative any expression of the form ##\int_a^x f(x) \, dx##, where ##a## is in the domain of ##f## and ##f## is continuous Sometimes, it becomes a little unclear which definition an author really has in mind, though...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K