What is the issue with the two methods used to solve the ODE dy/dx=x(1-y)?

badtwistoffate
Messages
81
Reaction score
0
Got the eqn dy/dx=x(1-y) and it can be solved both linear and separable methods.(Linear method being using a integrating factor) Problem I am having is that with this two methods i get two different (yet similar answers) and was wondering if you can see my problem with this two methods I am using.

Integrating Factor method:
y'+xy=x, u'(x)=e^(x^2/2)

[e^(x^2/2)y]'=x*e^(x^2/2)

e^(x^2/2)y=integral(x*e^(x^2/2)), do u substitution, get...

e^(x^2/2)y=e^(x^2/2)+c

y=1+c/e^(x^2/2) or y=1+c*e^(-x^2/2)

Separable method:
dy/(1-y)=x dx, integrate both sides

-ln(1-y)=e^(x^2/2)+C, raise both sides to e.

1/(1-y)=K*e^(x^2/2)+C, rearrange to get y=.

y=1-1/K*e^(x^2/2)

so we get two different answers with these methods, where is the problem lieing or are both wrong?
 
Physics news on Phys.org
badtwistoffate said:
Separable method:
dy/(1-y)=x dx, integrate both sides

-ln(1-y)=e^(x^2/2)+C, raise both sides to e.

1/(1-y)=K*e^(x^2/2)+C, rearrange to get y=.

y=1-1/K*e^(x^2/2)
You got a bit sloppy near the end. Some mistakes are just typo's I think.

-\ln(1-y)=\frac{1}{2}x^2+C
1-y=K\exp(-\frac{1}{2}x^2)
y=1-K\exp(-\frac{1}{2}x^2)

So it's the same.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top