What is the Limit of Prime Factors per Integer?

  • Context: MHB 
  • Thread starter Thread starter alexmahone
  • Start date Start date
Click For Summary
SUMMARY

The limit of the ratio of the number of prime factors of an integer \( n \), denoted as \( \nu(n) \), to \( n \) approaches zero as \( n \) increases. Specifically, it is proven that \( \lim_{n \to \infty} \frac{\nu(n)}{n} = 0 \) using the properties of prime numbers and the binomial coefficient. The discussion references Bertrand's postulate and utilizes inequalities to establish the relationship between \( \pi(x) \), the number of prime factors less than or equal to \( x \), and \( x \). The proof is derived from David M. Burton's "Elementary Number Theory".

PREREQUISITES
  • Understanding of prime factorization and the function \( \nu(n) \)
  • Familiarity with limits and calculus concepts
  • Knowledge of binomial coefficients and their properties
  • Basic understanding of logarithmic functions, particularly \( \log_2 \)
NEXT STEPS
  • Study the implications of Bertrand's postulate in number theory
  • Explore the properties of binomial coefficients in combinatorial mathematics
  • Learn about the Squeeze Theorem and its applications in calculus
  • Investigate the distribution of prime numbers and the function \( \pi(x) \)
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in the properties of prime factors and their limits in relation to integers.

alexmahone
Messages
303
Reaction score
0
Let $\nu(n)$ be the number of prime factors of the integer $n$. For example, $\nu(8)=3$, $\nu(5)=1$. Prove: $\lim\ \nu(n)/n=0$.
 
Mathematics news on Phys.org
Alexmahone said:
Let $\nu(n)$ be the number of prime factors of the integer $n$. For example, $\nu(8)=3$, $\nu(5)=1$. Prove: $\lim\ \nu(n)/n=0$.
In math literature we use the symbol $\pi(x)$ for number of prime factors of the integer that less or equal to $x$.You need to prove that:$$\lim_{x\to\infty}\frac{\pi{(x)}}{x}=0$$Proof:Recall calculus limit definition:We will show that for all $\varepsilon >0$, there is exist $N$ such that $\frac{\pi(x)}{x}<\varepsilon$ for all $x\geq N$.Let $n>1$ be a natural number. Bertrand postulate guarantees us existence of prime number $p$ so that $2^{n-1}<p<2^n$. $p$ such that maintains $p\mid (2^n)!$ but $p\nmid (2^{n-1})!$ , hence the binomial coefficient $\binom{2^n}{2^{n-1}}$ divisible by $p$.From the above we get the following inequalities:$$2^{2^n}\geq \binom{2^n}{2^{n-1}} \geq \prod _{2^{n-1}<p<2^n}p\geq (2^{n-1})^{\pi(2^n)-\pi(2^{n-1})}$$We can say conclude that,$$\pi(2^n)-\pi(2^{n-1})\leq \frac{2^n}{n-1}$$Now we substitute $ n=2k,2k-1,2k-2,...,3 $, and summing all the inequalities, we'll get:$$\pi({2^{2k}})-\pi({2^2})\leq \sum ^{2k}_{r=3}\frac{2^r}{r-1}$$It's clear that, $\pi{2^2}<2^2$, hence:$$\pi({2^{2k}})<\sum ^{2k}_{r=2}\frac{2^r}{r-1}=\sum ^{k}_{r=2}\frac{2^r}{r-1}+\sum ^{2k}_{r=k+1}\frac{2^r}{r-1}<\sum ^{k}_{r=2}{2^r}+\sum ^{2k}_{r=k+1}\frac{2^r}{k}<2^{k+1}+\frac{2^{2k+1}}{k}$$$k<2^k$ for all $k\geq 2$ and, $2^{k+1}<\frac{2^{2k+1}}{k}$, so:$$\pi({2^{2k}})<2(\frac{2^{2k+1}}{k})=4(\frac{2^{2k}}{k})$$or:$$\frac{2^{2k}}{2^{2k}}<\frac{4}{k}$$

For all real number $x>4$ , there is exist unique natural number $k$ such that: $$2^{2k-2}<x\leq 2^{2k}$$From last inequality we can deduce:$$\frac{\pi(x)}{x}\leq \frac{\pi(2^{2k})}{x}<\frac{\pi(2^{2k})}{2^{2k-2}}=4(\frac{\pi({2^{2k}})}{2^{2k}})<\frac{16}{k}$$Now, let $ \varepsilon >0$, and we choose $ N=2^{2[\frac{16}{\varepsilon }]+1}$. If $x\geq N$ then $k\geq [\frac{16}{\varepsilon }]+1$, and:$$\frac{\pi(x)}{x}<\frac{16}{[\frac{16}{\varepsilon }]+1}<\varepsilon $$

Q.E.DThe proof is from David M. Burton, Elementary Number Theory, page 419, Hebrew edition.
 
Last edited:
There's actually a neat way of doing this:

Let $n=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_k^{\alpha_k}$

Then $\nu(n)=\alpha_1+\alpha_2+\ldots+\alpha_k$

$n\ge 2^{\alpha_1}2^{\alpha_2}\ldots 2^{\alpha_k}=2^{\alpha_1+\alpha_2+\ldots+\alpha_k}=2^{\nu(n)}$

$\log_2 n\ge\nu(n)$

$0\le\frac{\nu(n)}{n}\le\frac{\log_2 n}{n}$

Using the squeeze theorem, we see that $\lim \frac{\nu(n)}{n}=0$.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K