What is the maximum value of f''(0) for functions in set F?

  • Thread starter Thread starter niklas
  • Start date Start date
  • Tags Tags
    Set
niklas
Messages
3
Reaction score
0
Let D\subset\mathbb{C} be the unitdisc and F=\{f:D\rightarrow D\,|\,\forall z\in D\partial_{\bar{z}}f=0\}, calculate L=\sup_{f\in F}|f''(0)|. Show that there is an g\in F with g''(0)=L.
I am a bit stuck. But I think that it might be an idea to start with Cauchy estimate. Any other ideas?
 
Last edited:
Physics news on Phys.org
<br /> |a_n|\leq\frac{1}{2\pi}\frac{M}{r^3}l=\frac{M}{r^2}\quad M=\max_{|z|&lt;r&lt;1}|f(z)|=\sup_{z\in\partial D_r}|f(z)|<br />
?
 
Last edited:
=1??
 
Back
Top