tommy01
- 39
- 0
hi everybody.
\textbf{J}_1 and \textbf{J}_2 are angular momentum (vector-)operators.
In many textbooks \left[\textbf{J}_1,\textbf{J}_2\right] = 0 is stated to be a condition to show that \textbf{J}=\textbf{J}_1+\textbf{J}_2 is also an angular momentum (vector-)operator. But what is meant with \left[\textbf{J}_1,\textbf{J}_2\right] = 0. When i show that \textbf{J} is an angular momentum operator (i.e. \left[J_x,J_y\right]=iJ_z ...) i always need the condition \left[(\textbf{J}_1)_x,(\textbf{J}_2)_x\right] and the like. So the components of \textbf{J}_1 and \textbf{J}_2 should mutually commute. Is this the meaning of \left[\textbf{J}_1,\textbf{J}_2\right] = 0? For me it looks like (\textbf{J}_1)_x(\textbf{J}_2)_x+(\textbf{J}_1)_y(\textbf{J}_2)_y+(\textbf{J}_1)_z(\textbf{J}_2)_z-(\textbf{J}_2)_x(\textbf{J}_1)_x-(\textbf{J}_2)_y(\textbf{J}_1)_y-(\textbf{J}_2)_z(\textbf{J}_1)_z=0 and this does not imply the conditions i need (as far as i see).
I know Operators acting on different spaces commute and this fact is often used but i want to know how to treat the situation above only with the formal condition \left[\textbf{J}_1,\textbf{J}_2\right] = 0.
thanks and greetings tommy.
\textbf{J}_1 and \textbf{J}_2 are angular momentum (vector-)operators.
In many textbooks \left[\textbf{J}_1,\textbf{J}_2\right] = 0 is stated to be a condition to show that \textbf{J}=\textbf{J}_1+\textbf{J}_2 is also an angular momentum (vector-)operator. But what is meant with \left[\textbf{J}_1,\textbf{J}_2\right] = 0. When i show that \textbf{J} is an angular momentum operator (i.e. \left[J_x,J_y\right]=iJ_z ...) i always need the condition \left[(\textbf{J}_1)_x,(\textbf{J}_2)_x\right] and the like. So the components of \textbf{J}_1 and \textbf{J}_2 should mutually commute. Is this the meaning of \left[\textbf{J}_1,\textbf{J}_2\right] = 0? For me it looks like (\textbf{J}_1)_x(\textbf{J}_2)_x+(\textbf{J}_1)_y(\textbf{J}_2)_y+(\textbf{J}_1)_z(\textbf{J}_2)_z-(\textbf{J}_2)_x(\textbf{J}_1)_x-(\textbf{J}_2)_y(\textbf{J}_1)_y-(\textbf{J}_2)_z(\textbf{J}_1)_z=0 and this does not imply the conditions i need (as far as i see).
I know Operators acting on different spaces commute and this fact is often used but i want to know how to treat the situation above only with the formal condition \left[\textbf{J}_1,\textbf{J}_2\right] = 0.
thanks and greetings tommy.