kathrynag
- 595
- 0
1.Find the degree and basis for Q(3^1/2,7^1/2) over Q.
2.For any positive integers a, b, show that Q(a^1/2+b^1/2)=Q(a^1/2,b^1/2)
Ideas:
1. Well I know if I looked at (3)^1/2 over Q
Then (3)^1/2 has minimal polynomial x^2-3, so degree 2 over Q
(7)^1/2 has minimal polynomial x^2-7 so degree 2 over Q
so entire thing has degree 2.
Really unsure about basis
2.I started by computing the minimal polynomial of a^1/2+b^1/2 over Q
x=a^1/2+b^1/2
x-a^1/2=b^1/2
x^2+2(a)^(1/2)x+a=3
x^2+a-3=2(a)^1/2
x^4+x^2a-3x^2+x^2a+a^2-3a-3x^2-3a+9=4a
x^4+2x^2a-6x^2+a^2-6a+9-4a=0
I don't know how that would hekp me, though
2.For any positive integers a, b, show that Q(a^1/2+b^1/2)=Q(a^1/2,b^1/2)
Ideas:
1. Well I know if I looked at (3)^1/2 over Q
Then (3)^1/2 has minimal polynomial x^2-3, so degree 2 over Q
(7)^1/2 has minimal polynomial x^2-7 so degree 2 over Q
so entire thing has degree 2.
Really unsure about basis
2.I started by computing the minimal polynomial of a^1/2+b^1/2 over Q
x=a^1/2+b^1/2
x-a^1/2=b^1/2
x^2+2(a)^(1/2)x+a=3
x^2+a-3=2(a)^1/2
x^4+x^2a-3x^2+x^2a+a^2-3a-3x^2-3a+9=4a
x^4+2x^2a-6x^2+a^2-6a+9-4a=0
I don't know how that would hekp me, though