What is the pattern in factorials and squares?

karpmage
Messages
32
Reaction score
0
Hi there, I don't really have a question but I just thought I'd share something that I've found and see if anyone could make any sense of it, or find some sort of pattern in the results. I noticed that for some of the first few factorials (from 4! to 12!), (ceiling[(n!)0.5]2-n!)=a perfect square. This pattern doesn't apply for 12! and then stops applying altogether after 16! Adding a number to the square root after I round it sometimes also gives a perfect square as the final answer. (i.e. sometimes ((ceiling[(n!)0.5]+k)2-n!)=a perfect square.) I honestly don't see a pattern, but there may very well be one. I just thought I'd share it with you guys. Here are my results from Wolfram Alpha:

http://www.wolframalpha.com/input/?...[(x!)^0.5]+k)^2-x!)^0.5]),+{x,1,120}]+for+k=0
(If the answer is 0, then the end answer is a perfect square.)

http://www.wolframalpha.com/input/?...+k)^2-x!)^0.5])^(1/((10)^100+1)))^2)]+for+k=0
(Same as above, if y=0 then the answer is a perfect square.)

P.S. It's not as if I've actually found something. I'm just putting this here and maybe you guys might find some sort of pattern. I'm trying myself to see if there's one but this increases the chances I guess. I apologise if this was a stupid thing to post and the pattern is obvious, or if there is obviously no pattern. Just want to see what you guys think.
 
Last edited:
Mathematics news on Phys.org
Here's what I observed: Let
$$n! = \left( \prod_i p_i^{2n_i} \right) \cdot \left( \prod_j q_j^{2m_j + 1} \right)$$
be the prime factorization of n! split into even and uneven powers (so pi and qi are primes). Then
$$\operatorname{ceil}(\sqrt{n!})^2 = \left( \prod_i p_i^{2n_i} \right) \cdot \left( \prod_j q_j^{2m_j} \cdot \operatorname{ceil}(\sqrt{q_j})^2 \right) = \left( \prod_i p_i^{n_i} \cdot \prod_j q_j^{m_j} \right)^2 \cdot \prod_j \operatorname{ceil}(\sqrt{q_j})^2 $$

So the question is: when is
$$\prod_j \operatorname{ceil}(\sqrt{q_j})^2$$
a perfect square? :)

Now of course, ##f(2) = f(3) = 2 = \sqrt{4}##, ##f(5) = f(7) = 3 = \sqrt{9}##, ##f(11) = f(13) = 4 = \sqrt{16}## - where f stands for the square-of-ceiling-of-root operation - so probably as long as you have odd factors of consecutive primes they will always multiply to a square (e.g. if you have one factor of 2 and one factor of 3, you get f(2) f(3) = 4).
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Back
Top