Ted123
- 428
- 0
Homework Statement
[PLAIN]http://img59.imageshack.us/img59/2091/diffeq.png
[PLAIN]http://img684.imageshack.us/img684/6748/diffeqp.png
The Attempt at a Solution
Making the substitutions y= \sum_{n=0}^{\infty} a_n x^n and y^{\prime} = \sum_{n=0}^{\infty}na_nx^{n-1},
\begin{align*}<br /> y'-2xy & = \sum_{n=0}^{\infty} (na_nx^{n-1} - 2xa_nx^n )\\<br /> &= \sum_{n=0}^{\infty} na_nx^{n-1} - \sum_{n=0}^{\infty} 2xa_nx^n\\<br /> &= \sum_{n=1}^{\infty} na_nx^{n-1} - 2\sum_{n=0}^{\infty} a_nx^{n+1}\\<br /> &= \sum_{n=1}^{\infty} na_nx^{n-1} - 2\sum_{n=0}^{\infty} a_nx^{n+1}<br /> \end{align*}<br />
Now I'm having trouble seeing how to shift the summation index to combine the 2 sums into one and to have one coefficient of x^{n+1}
Last edited by a moderator: