sandy.bridge
- 797
- 1
Homework Statement
<br /> \begin{pmatrix}<br /> -2 & 0 & 0\\<br /> 0 & -2 & 0\\<br /> 0 & 0 & -2<br /> \end{pmatrix}<br />
If I evaluate with eigenvalues, I get:
<br /> det\begin{pmatrix}<br /> -2-\lambda & 0 & 0\\<br /> 0 & -2-\lambda & 0\\<br /> 0 & 0 & -2-\lambda<br /> \end{pmatrix}=0<br />
(-2-\lambda{)}((-2-\lambda{)}(-2-\lambda{)})=0
and thus
\lambda{=}-2
So there exists a local maximum according to this. However, when I evaluate with a different method offered in my textbook, I get a different result, which is confusing me as this method has always worked before.
det(-2)=-2<0, det\begin{pmatrix}<br /> -2 & 0\\<br /> 0 & -2<br /> \end{pmatrix}=4>0, det\begin{pmatrix}<br /> -2 & 0 & 0\\<br /> 0 & -2 & 0\\<br /> 0 & 0 & -2<br /> \end{pmatrix}=-8<0
By this method it is a saddle point. Not entirely sure what is going on here.