What is the significance of Fourier Series in representing functions?

DUET
Messages
55
Reaction score
0
The Fourier series can be used to represent an arbitrary function within the interval from - π to + π even though function does not continue or repeat outside this interval. Outside this interval the Fourier series expression will repeat faithfully from period to period irrespective of whether the given function continues. The same remarks apply to any arbitrary function which is specified over any finite range, say from t=0 to t=t0. An infinite number of Fourier series expansion with fundamental periods T≥t0 can be found such that they all reproduce f(t) within the given range. Outside this range, different expansion may have entirely different values, depending upon the choice of T as compared with t0 and of the waveform in the interval from t= t0 to T, which is entirely arbitrary except that the Dirichlet conditions must be satisfied.

I was reading a book, Analysis of linear systems-by David K. Cheng, to learn Fourier series. I have understood every think except the above writing. Could someone please explain me the purpose of the above writing?
 
Physics news on Phys.org
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top