What is the significance of k being a multiple of 2 or 3?

dodo
Messages
695
Reaction score
2
Let p,q be two different primes from 5 onwards (not 2 or 3). Let p be the biggest of the two.

The difference of squares p^2 - q^2, since p,q are both odd, is always a multiple of 8 (easy to prove). So take the integer k = (p^2 - q^2) / 8.

It turns out that k seems to be (says friend computer) a multiple of 2 or a multiple of 3, or both. I can't find an example where k is divided neither by 2 nor by 3.

Example: p=53, q=31. p^2 - q^2 = 1848 = 8 * 231. And 231 is divisible by 3.

If p and q were not primes, but just odd and coprime, then counterexamples abound. (I use coprimes because, had they a factor in common, one could produce k as a multiple of anything.) For instance: p=45, q=31. p^2 - q^2 = 1064 = 8 * 133; and 133 is not divisible by 2 nor 3.

Any hint as of why would it work only with primes (>= 5)? Or a counterexample?

-----
EDIT: Doh, forget it. It has to do with the numbers being 6n+1 or 6n-1. (If any mod can delete this thread I would be less embarrased.)
 
Last edited:
Physics news on Phys.org
Dodo said:
Let p,q be two different primes from 5 onwards (not 2 or 3). Let p be the biggest of the two.

The difference of squares p^2 - q^2, since p,q are both odd, is always a multiple of 8 (easy to prove). So take the integer k = (p^2 - q^2) / 8.
I'm assuming you're familiar with modular arithmetic -- any two odd numbers have the same square modulo 8.

It turns out that k seems to be (says friend computer) a multiple of 2 or a multiple of 3, or both. I can't find an example where k is divided neither by 2 nor by 3.
If k is again divisible by 2, then you are asserting any two odd primes square to the same thing modulo 16. And if k is divisible by 3, you are asserting that any two odd primes square to the same thing modulo 3.



Using modular arithmetic, it should be easy to prove that k is divisible by 3, and to find an example where k is not divisible by 2.

(aside: if m is relatively prime to n, then there are infinitely many prime numbers equivalent to m modulo n)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top