M. Kohlhaas
- 8
- 0
I'm just reading the schroeder/peskin introduction to quantum field theory. On Page 21 there is the equation
\phi(x)=\int\frac{d^3 p}{(2\pi)^3}\frac{1}{ \sqrt{2\omega_{\vec{p}}} } <br /> <br /> (a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}}<br /> <br /> +a^{+}_{\vec{p}} e^{-i \vec{p} \cdot \vec{x}}<br /> )
and in the next step:
\phi(x)=\int\frac{d^3 p}{(2\pi)^3}\frac{1}{ \sqrt{2\omega_{\vec{p}}} } <br /> <br /> (a_{\vec{p}} <br /> <br /> <br /> <br /> +a^{+}_{\vec{-p}}<br /> )e^{i \vec{p} \cdot \vec{x}}
with \omega_{\vec{p}}=\sqrt{|\vec{p}|^2+m^2}
I don't understand that. When I substitute \vec{p} for -\vec{p} shouldn't the Jacobi-determinant then put a minus sign such that:
\phi(x)=\int\frac{d^3 p}{(2\pi)^3}\frac{1}{ \sqrt{2\omega_{\vec{p}}} } <br /> <br /> (a_{\vec{p}} <br /> <br /> <br /> <br /> -a^{+}_{\vec{-p}}<br /> )e^{i \vec{p} \cdot \vec{x}}
What's wrong with me?
\phi(x)=\int\frac{d^3 p}{(2\pi)^3}\frac{1}{ \sqrt{2\omega_{\vec{p}}} } <br /> <br /> (a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}}<br /> <br /> +a^{+}_{\vec{p}} e^{-i \vec{p} \cdot \vec{x}}<br /> )
and in the next step:
\phi(x)=\int\frac{d^3 p}{(2\pi)^3}\frac{1}{ \sqrt{2\omega_{\vec{p}}} } <br /> <br /> (a_{\vec{p}} <br /> <br /> <br /> <br /> +a^{+}_{\vec{-p}}<br /> )e^{i \vec{p} \cdot \vec{x}}
with \omega_{\vec{p}}=\sqrt{|\vec{p}|^2+m^2}
I don't understand that. When I substitute \vec{p} for -\vec{p} shouldn't the Jacobi-determinant then put a minus sign such that:
\phi(x)=\int\frac{d^3 p}{(2\pi)^3}\frac{1}{ \sqrt{2\omega_{\vec{p}}} } <br /> <br /> (a_{\vec{p}} <br /> <br /> <br /> <br /> -a^{+}_{\vec{-p}}<br /> )e^{i \vec{p} \cdot \vec{x}}
What's wrong with me?