What is the significance of symmetry in the complex plane?

lolgarithms
Messages
120
Reaction score
0
How does one express mathematically the fact that:
if we complex-conjugated everything (switch i to -i (j to -j etc. in hypercomplex numbers) in all the definitions, theorems, functions, variables, exercises, jokes ;-)) in the mathematical literature the statements would still be true?
 
Last edited:
Mathematics news on Phys.org
Hmmm. Well, that's a very open-ended question.

It's not always true that you can simply switch z with \overline{z} without consequence. For example, given an analytic function df/d\overline{z}=0...a statement which is true of all functions! Another fact is that f(z) = \overline{z} is a nowhere analytic map, which means that you can't simply conjugate things without worrying about consequences!

However, in the largest picture, I suppose your question is about symmetry in the complex plane. In that case, I suppose the key lies in the fact that analytic functions (and thus satisfying the Cauchy-Riemann equations) impose a restriction on how the function behaves as x and y vary...that is, the (x,y) coordinates are necessarily coupled. This results in a great deal of symmetry.
 
If you switch i to -i in the definition of i (i.e. in the definition of complex numbers themselves), then you're just renaming/relabelling a symbol.
 
a. Choosing i as the "basic imaginary unit" that satisfies x^{2}=-1 is arbitrary, you could have chosen to work with -i instead.

b. (Equivalent) Measuring the argument counter-clockwise is also arbitrary, and you except that the sames conclusions and theorems will remain unchanged when measuring the argument clockwise (which is equivalent to conjugating)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top