A What Is the Significance of the Matrix Identity Involving \( S^{-1}_{ij} \)?

madness
Messages
813
Reaction score
69
Hi all,

I've come across an interesting matrix identity in my work. I'll define the NxN matrix as S_{ij} = 2^{-(2N - i - j + 1)} \frac{(2N - i - j)!}{(N-i)!(N-j)!}. I find numerically that \sum_{i,j=1}^N S^{-1}_{ij} = 2N, (the sum is over the elements of the matrix inverse). In fact, I expected to get 2N based on the problem I'm studying, but I don't know what this complicated matrix expression is doing or why it equals 2N. Does any of this look familiar to anyone here?

Thanks for your help!

P.S. If this is in the wrong subforum, please move it.
 
Physics news on Phys.org
Interesting, how did you come across this? using some numerical computing software like matlab?

@fresh_42 or @Mark44 might be interested in how you discovered this.
 
I haven't run through the math, but keep in mind that the inverse matrix element can be expressed as:
$$(S^{-1})_{ij} = \frac{1}{\det{S}}C_{ji}$$
where ##C_{ji}## is the element of the transposed cofactor matrix. Also remember that the determinant can be expressed as a cofactor expansion:
$$\det{S} = \sum_{i=1}^{N} S_{ij} C_{ij}$$
Also keep in mind that the cofactor expansion works for any row or any column, so that
$$(S^{-1})_{ij} = \frac{C_{ji}}{ \sum_{i=1}^{N} S_{ji} C_{ji}}$$
I dunno, maybe that helps. It might not hurt, too, to see if you can pull out a general formula for the cofactor.
 
Thanks for the help.

@jedishrfu I discovered this trying to maximise the following:

\frac{\left[ \int_0^\infty f(t) dt \right]^2}{\int_0^\infty f^2(t) dt } where f(t) = \sum_{i=1}^N w_i \frac{(ct)^{N-i}}{(N-i)!} e^{\lambda t} and w_i are weights which I want to maximise with respect to. I can show that the maximum is \frac{1}{-\lambda} \sum_{ij} \left(S^{-1}\right)_{ij} and using Matlab this turns out to be \frac{2N}{-\lambda} for N=1...15 (I stopped here as it became numerically unstable).

@TeethWhitener I can see that your approach must give the right answer, but finding a closed form expression for the cofactor seems difficult for an arbitrary NxN matrix.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top