MHB What is the smallest time from the data given

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Data Time
AI Thread Summary
The discussion revolves around determining the smallest time from the equation \(\sin(120\pi t)=\frac{2}{5}\). It is clarified that the smallest time corresponds to one cycle, and multiple solutions for \(t\) exist based on the equation derived. The expression for \(t\) is given as \(t=\frac{n}{120}+\frac{(-1)^n}{120\pi} \sin^{-1}\frac{2}{5}\), where \(n\) is a non-negative integer. Substituting \(n=0\) yields the smallest value for \(t\), though further proof is suggested to confirm this minimum. The conversation emphasizes the need for clarity in the definition of "smallest time" in the context of the problem.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
https://www.physicsforums.com/attachments/1729

before I proceed with b, c, and d. what really is meant by the smallest time. does this mean the time of one cycle. there are multiple answers if it calculated for t. the steps I used give one but that may not be the correct process. no ans given
 
Mathematics news on Phys.org
karush said:
https://www.physicsforums.com/attachments/1729

before I proceed with b, c, and d. what really is meant by the smallest time. does this mean the time of one cycle. there are multiple answers if it calculated for t. the steps I used give one but that may not be the correct process. no ans given

Hi karush, :)

You have obtained,

\[\sin(120\pi t)=\frac{2}{5}\]

Generally, the values that satisfies this equation are given by,

\[120\pi t=n\pi+(-1)^n \sin^{-1}\frac{2}{5}\]

where \(n\in \mathbb{Z}^{+}\cup\{0\}\). Therefore we have,

\[ t=\frac{n}{120}+\frac{(-1)^n}{120\pi} \sin^{-1}\frac{2}{5}\]

So by substituting \(n=0,\,1,\,2\,\cdots\) and so on we can see that at \(n=0\), \(t\) attains it's smallest value. That's not a proof though, I guess to show that \(t(n)=\frac{n}{120}+\frac{(-1)^n}{120\pi} \sin^{-1}\frac{2}{5}\) has a minimum at \(n=0\) in a more abstract manner will need more work. I can't think of any simple method. :confused:
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top