What is the Solution for t in the Equation t^{t^2}=k?

  • Thread starter Thread starter Gregg
  • Start date Start date
Gregg
Messages
452
Reaction score
0

Homework Statement



Solve for t: t^{t^2}=k

Homework Equations



Y=Xe^X \iff X=W(Y)

The Attempt at a Solution



t^{t^2} = k

t = k^{1\over t^2}

t = e^{{1\over t^2} ln (k)}

{1\over t} ln(k) = {1\over t^2} ln(k) e^{{1\over t^2} ln(k)}

t = \sqrt{ln(k)\over {W({{1\over t} ln(k)})}}
 
Physics news on Phys.org
This isn't right by the way. I'm wondering how to get to the right answers.
 
t^{t^2} = k

t^{2{t^2}} = k^2

t^2= k^{2\over t^2}

t^2 = e^{{2\over t^2}ln(k)}

2ln(k) = {2ln(k)\over t^2}e^{{2\over t^2}ln(k)}

W(2ln(k)) = {2ln(k)\over t^2} \Rightarrow t = \pm \sqrt{2ln(k) \over W(2ln(k))}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top