What is the solution for x^2 = 78 (mod 41503)?

  • Thread starter Thread starter zzzcreepyzzz
  • Start date Start date
zzzcreepyzzz
Messages
3
Reaction score
0
Determine whether or not the following congruence has a solution:
x^2 = 78 (mod 41503). If a solution exist then find a positive integer that satisfies the solution. Here, = means "congruent to".

I understand the fact that if 78 is the quadratic residue of 41503 then we have a solution but I don't know how I should do that? Should I break down 78 into factors of prime and then try to verify using quadratic reciprocity? Assuming that there IS a solution, how do I find an integer that satisfies the congruent? Please help! thanks!
 
Physics news on Phys.org
So x2 - 78 \equiv 0 mod 41503, or
x2 - 78 = 41503k, for some integer k.

A brute force approach would be to substitute five of ten values for k (such as 1 through 5 or 10), and see if you can get a solution. The problem asks for only one solution, and you might get lucky and find one this way.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top