What is the Solution to the Complex Sum \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Complex Sum
Click For Summary

Discussion Overview

The discussion revolves around evaluating the complex sum $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$. Participants are sharing their approaches and solutions related to this mathematical expression.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 presents the problem for evaluation without providing a solution.
  • Post 2 reiterates the problem, suggesting a focus on finding a solution.
  • Post 3 includes a participant's proposed solution, though the details of the solution are not specified.
  • Post 4 indicates that there is an alternative solution presented by another participant, but specifics are not provided.

Areas of Agreement / Disagreement

The discussion does not show clear consensus, as multiple participants have presented their own solutions or approaches without resolving the problem or agreeing on a single solution.

Contextual Notes

Details of the proposed solutions are not fully elaborated, leaving the evaluation process and any assumptions involved in the calculations unclear.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$.
 
Physics news on Phys.org
anemone said:
Evaluate $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$.

My solution:

Let's write the sum as:

$$S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)$$

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

$$S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)$$

Let's now look at the 3 sums on the right in turn:

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}$$

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}$$

$$\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}$$

And so, we may now state the partial sum as:

$$S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}$$

And so the infinite sum is:

$$S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}$$
 
MarkFL said:
My solution:

Let's write the sum as:

$$S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)$$

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

$$S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)$$

Let's now look at the 3 sums on the right in turn:

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}$$

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}$$

$$\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}$$

And so, we may now state the partial sum as:

$$S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}$$

And so the infinite sum is:

$$S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}$$

Awesome, MarkFL!(Cool)
 
Solution of other:
Note that $2(3n^2+1)=(n+1)^3-(n-1)^3$, so the sum becomes

$$\begin{align*}\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}&=\frac{1}{2}\sum_{n>1} \frac{(n+1)^3-(n-1)^3}{n^3(n+1)^3(n-1)^3}\\&=\frac{1}{2}\left(\sum_{n>1} \frac{1}{n^3(n-1)^3}-\sum_{n>1} \frac{1}{n^3(n+1)^3}\right)\\&=\frac{1}{2}\left(\frac{1}{2^3(2-1)^3}\right)\\&=\frac{1}{16}\end{align*}$$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
Replies
3
Views
2K