What is the Solution to the Complex Sum \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Complex Sum
Click For Summary
SUMMARY

The forum discussion centers on evaluating the complex sum $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$. Participants provided various approaches to simplify and compute the sum, with a focus on algebraic manipulation and series convergence. MarkFL's solution was highlighted as particularly effective, demonstrating the use of partial fraction decomposition to simplify the expression for easier evaluation.

PREREQUISITES
  • Understanding of series convergence and divergence
  • Familiarity with partial fraction decomposition
  • Knowledge of algebraic manipulation techniques
  • Basic calculus concepts related to summation
NEXT STEPS
  • Study partial fraction decomposition techniques in detail
  • Explore convergence tests for infinite series
  • Learn advanced algebraic manipulation strategies
  • Investigate similar summation problems in mathematical analysis
USEFUL FOR

Mathematicians, students studying calculus or series, and anyone interested in advanced summation techniques will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$.
 
Physics news on Phys.org
anemone said:
Evaluate $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$.

My solution:

Let's write the sum as:

$$S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)$$

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

$$S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)$$

Let's now look at the 3 sums on the right in turn:

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}$$

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}$$

$$\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}$$

And so, we may now state the partial sum as:

$$S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}$$

And so the infinite sum is:

$$S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}$$
 
MarkFL said:
My solution:

Let's write the sum as:

$$S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)$$

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

$$S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)$$

Let's now look at the 3 sums on the right in turn:

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}$$

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}$$

$$\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}$$

And so, we may now state the partial sum as:

$$S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}$$

And so the infinite sum is:

$$S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}$$

Awesome, MarkFL!(Cool)
 
Solution of other:
Note that $2(3n^2+1)=(n+1)^3-(n-1)^3$, so the sum becomes

$$\begin{align*}\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}&=\frac{1}{2}\sum_{n>1} \frac{(n+1)^3-(n-1)^3}{n^3(n+1)^3(n-1)^3}\\&=\frac{1}{2}\left(\sum_{n>1} \frac{1}{n^3(n-1)^3}-\sum_{n>1} \frac{1}{n^3(n+1)^3}\right)\\&=\frac{1}{2}\left(\frac{1}{2^3(2-1)^3}\right)\\&=\frac{1}{16}\end{align*}$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K