MHB What is the Solution to the Complex Sum \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Complex Sum
Click For Summary
The discussion centers on evaluating the complex sum \(\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}\). Participants share their approaches and solutions to this mathematical problem. Various methods are proposed, with some users expressing enthusiasm for the solutions provided. The conversation highlights the complexity of the sum and the different strategies employed to tackle it. Ultimately, the focus remains on finding an accurate evaluation of the given series.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$.
 
Mathematics news on Phys.org
anemone said:
Evaluate $$\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}$$.

My solution:

Let's write the sum as:

$$S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)$$

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

$$S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)$$

Let's now look at the 3 sums on the right in turn:

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}$$

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}$$

$$\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}$$

And so, we may now state the partial sum as:

$$S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}$$

And so the infinite sum is:

$$S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}$$
 
MarkFL said:
My solution:

Let's write the sum as:

$$S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)$$

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

$$S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)$$

Let's now look at the 3 sums on the right in turn:

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}$$

$$\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}$$

$$\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}$$

And so, we may now state the partial sum as:

$$S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}$$

And so the infinite sum is:

$$S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}$$

Awesome, MarkFL!(Cool)
 
Solution of other:
Note that $2(3n^2+1)=(n+1)^3-(n-1)^3$, so the sum becomes

$$\begin{align*}\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}&=\frac{1}{2}\sum_{n>1} \frac{(n+1)^3-(n-1)^3}{n^3(n+1)^3(n-1)^3}\\&=\frac{1}{2}\left(\sum_{n>1} \frac{1}{n^3(n-1)^3}-\sum_{n>1} \frac{1}{n^3(n+1)^3}\right)\\&=\frac{1}{2}\left(\frac{1}{2^3(2-1)^3}\right)\\&=\frac{1}{16}\end{align*}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K