A What is the true energy required to excite an atomic electron?

Maurice Morelock
Messages
17
Reaction score
5
TL;DR Summary
Is electronic excitation caused by a single wave or multiple waves in a given time period?
Energy is equal to Planck’s constant times the number of waves in 1 sec. The time scale for electronic excitation is far shorter then one second. So when we talk about the excitation of an electron from a lower level to a higher level occurring at a certain energy, are we talking about the exciting photon as a single wave with the amplitude equal to the number of waves in one sec?
 
Last edited:
Physics news on Phys.org
Maurice Morelock said:
Summary:: Is electronic excitation caused by a single wave or multiple waves in a given time period?

Energy is equal to Planck’s constant times the number of waves in 1 sec. The time scale for electronic excitation is far shorter then one second. So when we talk about the excitation of an electron from a lower level to a higher level occurring at a certain energy, are we talking about the exciting photon as a single wave with the amplitude equal to the number of waves in one sec?
A full description of the excitation of an atom by a photon requires an analysis using QFT and, in particular, the quantization of the EM field.

https://en.wikipedia.org/wiki/Quantization_of_the_electromagnetic_field

The simplest description using only QM has a single photon of precisely the correct energy being absorbed by the atom and then a photon of the same energy being subsequently emitted. This is, however, not the whole story.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top