Piano man
- 73
- 0
Homework Statement
N=a^+a
a=\frac{ip+mwx}{\sqrt{2m\hbar w}} \quad a^+=\frac{-ip+mwx}{\sqrt{2m\hbar w}}
|z>=e^{\frac{-|z|^2}{2}}\sum^{\infty}_{n=0}\frac{z^n}{\sqrt{n!}}|n>
where <n|n>=1
Show that the variance (uncertainty) in N, \Delta N is |z|
i.e. calculate (\Delta N)^2=<z|N^2|z>-<z|N|z>^2
2. The attempt at a solution
Taking <z|=e^{\frac{-|z|^2}{2}}\sum^{\infty}_{n=0}\frac{\bar{z}^n}{\sqrt{n!}}<n|
I subbed in appropriately and I got
e^{-|z|^2}\sum^{\infty}_{n=0}\frac{(\bar{z}z)^n}{n!}y-e^{-2|z|^2}\sum^{\infty}_{n=0}\frac{(\bar{z}z)^{2n}}{(n!)^2}y
where y=\frac{m^4w^4x^4+2p^2m^2w^2x^2+p^4}{4m^2\hbar^2 w^2}
This leads to e^{-|z|^2+z\bar{z}}y-e^{-2|z|^2+2z\bar{z}}y I believe.
From here, how do I show that this equals |z|^2?