What is the variance of the product of a complex Gaussian matrix and vector?

nikozm
Messages
51
Reaction score
0
Hi,

Assuming that A is a n x m random matrix and each of its entries are complex Gaussian with zero mean and unit-variance. Also, assume that b is a n x1 random vector and its entries are complex Gaussian with zero mean and variance=s. Then, what would be the variance of their product Ab?

Any help would be useful.

Thanks
 
I think that you have first to know the variance of a product of two gaussians. More precisely, if X and Y are two independant random variables with distribution N(0,s) and N(0,s'), then what is the distribution of XY ? There are formulae in the litterature (Google it). Once you have obtained the distribution Z of XY, you have to know the distribution of the sum of several variable Z' of the same type (theoretically, this is the convolution product of the variables). I am almost certain that Z, and the sum of the variables Z', will have zero mean. The variance should be given in the litterature, if the sum of the Z' is a known distribution. If your matrix is large, then you can use the central limit theorem to approximate the sum of the Z'.
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top