vector product Definition and Topics - 5 Discussions

In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in three-dimensional space

R

3

{\displaystyle \mathbb {R} ^{3}}
, and is denoted by the symbol

×

{\displaystyle \times }
. Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product (projection product).
If two vectors have the same direction or have the exact opposite direction from one another (i.e., they are not linearly independent), or if either one has zero length, then their cross product is zero. More generally, the magnitude of the product equals the area of a parallelogram with the vectors for sides; in particular, the magnitude of the product of two perpendicular vectors is the product of their lengths.
The cross product is anticommutative (i.e., a × b = − b × a) and is distributive over addition (i.e., a × (b + c) = a × b + a × c). The space

R

3

{\displaystyle \mathbb {R} ^{3}}
together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket.
Like the dot product, it depends on the metric of Euclidean space, but unlike the dot product, it also depends on a choice of orientation or "handedness". The product can be generalized in various ways; it can be made independent of orientation by changing the result to a pseudovector, or the exterior product of vectors can be used in arbitrary dimensions with a bivector or 2-form result. Also, using the orientation and metric structure just as for the traditional 3-dimensional cross product, one can, in n dimensions, take the product of n − 1 vectors to produce a vector perpendicular to all of them. But if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions. (See § Generalizations, below, for other dimensions.)

View More On Wikipedia.org
1. I How to find angle between vectors from dot and cross product

Hi, hopefully a quick question here.....how do you calculate the angle between two vectors if the only information you have is the value of their scalar product and the magnitude of their cross product? Thanks! Andy
2. I Angle between vectors via scalar product vs vector product

Hello, I have a question about why I can't determine the angle between two vectors using their cross product. Say there are two vectors in the XY-plane that we want to find the angle between: A = -2.00i + 6.00j B = 2.00i - 3.00j The method to do this would be to work out the scalar product of...
3. I A new vector-product for geometric algebra?

I am investigating the mathematical properties of a vector-product. I am wondering if it might be old-hat in GA (which is new to me)? I am using the working-title "spin-product" for a vector-product that combines RANDOM rotation-only of a direction-vector [a unit 1-vector; say...
4. Vector cross product

Homework Statement This is not a homework problem, I am currently reading the Derivation of potential of a charged particle in Electric and Magnetic field from the book Mechanics by Symon (I attached the image of the page), I need to know how to expand the vector cross product such as...
5. Prove that curl of a vector is a vector

Homework Statement Proove it Iam supposed to change coordinate system, and proove that the result depends on coordinate system. The Attempt at a Solution My attempt was to start from definition of cross product using levicivita. I already prooved that divergence of a vector is a scalar. But...