What is wrong with my math here? [Kinematics]

  • Thread starter Thread starter Kuzon
  • Start date Start date
  • Tags Tags
    Kinematics
AI Thread Summary
The discussion centers on a misunderstanding in calculating the kinetic and potential energy of a skateboarder on a ramp. The skateboarder starts with an initial horizontal velocity of 6.5 m/s, but a calculation error led to an incorrect value of 6.8 m/s. This discrepancy affected the final velocity calculation at the top of the ramp, which was found to be 5.77 m/s. The participant expressed frustration over the confusion, despite the problem being rooted in basic physics principles. Accurate calculations are crucial for solving kinematics problems effectively.
Kuzon
Messages
42
Reaction score
5

Homework Statement


Kp0dD6b.png


Open image in new tab to enlarge please :)

Homework Equations


I was trying to compare the initial KE/PE with the final KE/PE in order to find out how far the skateboarder rose but the solution was wrong for some reason?

Keep in mind the skateboarder is traveling along the HORIZONTAL portion of the ramp at 6.5m/s so when he gets to the top of the ramp he will only be traveling at 5.77m/s by my calculations.

The Attempt at a Solution


BIMNQfo.jpg
[/B]
 
Physics news on Phys.org
Somehow, the skateboarder's initial horizontal velocity morphed from 6.5 m/s to 6.8 m/s in your calculations of KE/PE. Bad handwriting, perhaps? :frown:
 
  • Like
Likes Kuzon
SteamKing said:
Somehow, the skateboarder's initial horizontal velocity morphed from 6.5 m/s to 6.8 m/s in your calculations of KE/PE. Bad handwriting, perhaps? :frown:
WOW, thanks so much. I was killing myself over this question and probably spent ~3 hours trying to rack my brain around it even though it's basic physics.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Back
Top