What Matrices Commute With All Invertible Matrices?

  • Thread starter Thread starter Shelnutt2
  • Start date Start date
  • Tags Tags
    Matrix
Shelnutt2
Messages
57
Reaction score
0

Homework Statement


Find all n x n-matrices A such that Q-1 A Q = A for all invertible n x n matrices Q.


Homework Equations


None


The Attempt at a Solution


Proof by induction
Assumption: True for A = k(In) where k is a real number

Base case: k = 1
When k =1
A = 1 * In = In
Q-1 * In * Q = In
(Q-1 * In) * Q = In
(Q-1) * Q =In
In = In.

When k = m
A = m * In
Q-1 * (m *In) * Q = m * In
m * (Q-1 * In) * Q = m * In
m * (Q-1) * Q = m * In
m * In = m * In.

m * In + In = In * (m + 1) =


When k = m+1
A = m+1 * In
Q-1 * ((m + 1) *In) * Q = (m + 1) * In
(m + 1) * (Q-1 * In) * Q = (m + 1) * In
(m + 1) * (Q-1) * Q = (m + 1) * In
(m + 1) * In = (m + 1) * In.

Since they equal this is true by induction.




This is one of 6 bonus problems the linear algebra class were given. It's the first three people to turn in each of the problems gets the two points. However you only get one submission. So I thought I'd have someone else check my work to see if it is correct or not before I turn it in.

Thank you in advance!
 
Physics news on Phys.org
i'm not too sure why you are using induction?

you should be able to show A=kIn is a solution to the equation for any k in the reals using just matrix multiplication. However you may need to do some work to show it is teh only solution
 
You say that the problem was "find all n x n-matrices A such that Q^{-1} A Q = A for all invertible n x n matrices Q" but then you ask about proving, by induction, that this is true for A= kIn. Do you understand that if you do prove that, you will NOT have done what you were asked to? In orfder to do that you would have to also prove that any other kind of matrix, this is NOT true.

Note that [math]Q^{-1}AQ= A[/math] is the same (multiply on both sides, on the right, by Q) AQ= QA. That is, A must commute with all invertible matrices.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top