What Quantum Conditions Govern a Particle in a Step Potential?

  • Thread starter Thread starter derravaragh
  • Start date Start date
  • Tags Tags
    Particle Potential
AI Thread Summary
The discussion focuses on determining the bound state energies of a particle in a step potential defined by specific wave functions. The boundary conditions at x = a lead to a transcendental equation involving cotangent functions, which helps find the allowed energies. The participant successfully outlines their approach for parts (a) and (b), identifying the lowest energy state as E1, just below pi. They seek clarification on normalizing the wave function for the lowest energy state and express uncertainty about the next steps. The conversation emphasizes the importance of applying the normalization factor correctly to finalize the wave function.
derravaragh
Messages
24
Reaction score
0

Homework Statement


The wave function for a particle of mass m moving in the potential
V =
{ ∞ for x=0
{ 0 for 0 < x ≤ a
{ V0 for x ≥ a

is
ψ(x)
{ Asin(kx) for 0 < x ≤ a
{ Ce-Kx for x ≥ a

with

k = √[(2mE/h2)]

K =√[((2m(V0-E)/h2)]

where h is h-bar in both equations, and remains so throughout this thread.

(a) Apply the boundary conditions at x = a and obtain the transcendental equation which determines the bound state energies E.
(b) If
√[(2mV0a2)/h2] = 3pi

determine the allowed bound state energies. Express your answers in the form of a numerical factor multiplying the dimensional factor (h2/(2ma2)).

(c) Given that the normalization factor for the wave function corresponding to the nth energy En is

An = √[2/a]*√[(Kna)/(1+(Kn*a))]

normalize the wave function for the lowest energy state.
(d) What is the probability that a measurement of the position of a particle in the ground state will give a result ≥ a?

Homework Equations





The Attempt at a Solution


I have completed parts (a) and (b) and I believe they are correct, here is a brief outline of what I did.
At x = a: ψ(a)

Asin(ka) = Ce-Ka (1)

dψ/dx

kAcos(kx) = -KCe-Ka (2)

Dividing (2) by (1):

kcot(ka) = -K
For the transcendental: z = ka, z0 = a√[(2mV0)/h2]

∴ -cot(z) = √[(z0/z)2-1]

Now setting z0 = 3pi (part b) and graphing -cot(z) and √[(z0/z)2-1] on the same plot, I find that intersections occur just below zn = npi

z = ka = a√[(2mE/h2)] ≈ npi

∴ Solving for En = (n2pi2h2)/(2ma2)

This is where I hit a road block. I believe the lowest energy state is E1 because it is just below pi (or 1pi), but I'm not sure what I'm supposed to do with this. I want to plug this into Kn, but that creates quite the mess. As for the second portion of ψ(x), I can just normalize that and solve for C using Kn, and I think I have a handle on part (d) as well. Any hints on part (c) or just checking my work so far would be much appreciated.

 
Physics news on Phys.org
I believe the lowest energy state is E1 because it is just below pi (or 1pi)
You mean it is the first non-zero energy eigenstate? ##\small E_0=0## and all.

You have the equations for the wavefunctions, you have decided that n=1 is the lowest one, so the lowest energy wavefunction must be ##\psi_1## - which you found an expression for in part a and b.

Part c asks for the normalized wavefunction - which requires the normalization factor A1: which you have an equation for.

What's the problem?

You could always check by normalizing the hard way.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top